Chhetri Maya and Drábek Pavel and Shivaji Ratnasingham: Influence of singular weights on the asymptotic behavior of positive solutions for classes of quasilinear equations. (2020)
Preview |
Teljes mű
ejqtde_spec_004_2020_073.pdf Download (515kB) | Preview |
Abstract
Main objective of this paper is to study positive decaying solutions for a class of quasilinear problems with weights. We consider one dimensional problems on an interval which may be finite or infinite. In particular, when the interval is infinite, unlike the known cases in the history where constant weights force the solution not to decay, we discuss singular weights in the diffusion and reaction terms which produce positive solutions that decay to zero at infinity. We also discuss singular weights that lead to positive solutions not satisfying Hopf’s boundary lemma. Further, we apply our results to radially symmetric solutions to classes of problems in higher dimensions, say in an annular domain or in the exterior region of a ball. Finally, we provide examples to illustrate our results.
Item Type: | Journal |
---|---|
Other title: | Honoring the career of Jeffrey R. L. Webb on the occasion of his seventy-fifth birthday |
Publication full: | Electronic journal of qualitative theory of differential equations : special edition |
Date: | 2020 |
Volume: | 4 |
Number: | 73 |
ISSN: | 1417-3875 |
Number of Pages: | 23 |
Language: | English |
DOI: | 10.14232/ejqtde.2020.1.73 |
Uncontrolled Keywords: | Differenciálegyenlet |
Additional Information: | Bibliogr.: p. 22-23. ; összefoglalás angol nyelven |
Date Deposited: | 2021. Nov. 12. 10:40 |
Last Modified: | 2021. Nov. 12. 10:40 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/73763 |
Actions (login required)
View Item |