Compactness of Riemann-Liouville fractional integral operators

Lan Kunquan: Compactness of Riemann-Liouville fractional integral operators. (2020)

[thumbnail of ejqtde_spec_004_2020_084.pdf]
Preview
Teljes mű
ejqtde_spec_004_2020_084.pdf

Download (446kB) | Preview

Abstract

We obtain results on compactness of two linear Hammerstein integral operators with singularities, and apply the results to give new proof that Riemann–Liouville fractional integral operators of order α ∈ (0, 1) map L p (0, 1) to C[0, 1] and are compact for each p ∈ 1 1−α . We show that the spectral radii of the Riemann–Liouville fractional operators are zero.

Item Type: Journal
Other title: Honoring the career of Jeffrey R. L. Webb on the occasion of his seventy-fifth birthday
Publication full: Electronic journal of qualitative theory of differential equations : special edition
Date: 2020
Volume: 4
Number: 84
ISSN: 1417-3875
Number of Pages: 15
Language: English
DOI: 10.14232/ejqtde.2020.1.84
Uncontrolled Keywords: Differenciálegyenlet
Additional Information: Bibliogr.: p. 13-15. ; összefoglalás angol nyelven
Date Deposited: 2021. Nov. 12. 12:04
Last Modified: 2021. Nov. 12. 12:04
URI: http://acta.bibl.u-szeged.hu/id/eprint/73774

Actions (login required)

View Item View Item