Lan Kunquan: Compactness of Riemann-Liouville fractional integral operators. (2020)
Preview |
Teljes mű
ejqtde_spec_004_2020_084.pdf Download (446kB) | Preview |
Abstract
We obtain results on compactness of two linear Hammerstein integral operators with singularities, and apply the results to give new proof that Riemann–Liouville fractional integral operators of order α ∈ (0, 1) map L p (0, 1) to C[0, 1] and are compact for each p ∈ 1 1−α . We show that the spectral radii of the Riemann–Liouville fractional operators are zero.
Item Type: | Journal |
---|---|
Other title: | Honoring the career of Jeffrey R. L. Webb on the occasion of his seventy-fifth birthday |
Publication full: | Electronic journal of qualitative theory of differential equations : special edition |
Date: | 2020 |
Volume: | 4 |
Number: | 84 |
ISSN: | 1417-3875 |
Number of Pages: | 15 |
Language: | English |
DOI: | 10.14232/ejqtde.2020.1.84 |
Uncontrolled Keywords: | Differenciálegyenlet |
Additional Information: | Bibliogr.: p. 13-15. ; összefoglalás angol nyelven |
Date Deposited: | 2021. Nov. 12. 12:04 |
Last Modified: | 2021. Nov. 12. 12:04 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/73774 |
Actions (login required)
View Item |