A solution to treat mixed-type human datasets from socio-ecological systems

Clark Lisa B.; González Eduardo; Henry Annie L.; Sher Anna A.: A solution to treat mixed-type human datasets from socio-ecological systems. In: Journal of environmental geography, (13) 3-4. pp. 51-60. (2020)

[thumbnail of journal_geo_013_003-004_051-060.pdf]
Előnézet
Cikk, tanulmány, mű
journal_geo_013_003-004_051-060.pdf

Letöltés (831kB) | Előnézet

Absztrakt (kivonat)

Coupled human and natural systems (CHANS) are frequently represented by large datasets with varied data including continuous, ordinal, and categorical variables. Conventional multivariate analyses cannot handle these mixed data types. In this paper, our goal was to show how a clustering method that has not before been applied to understanding the human dimension of CHANS: a Gower dissimilarity matrix with partitioning around medoids (PAM) can be used to treat mixed-type human datasets. A case study of land managers responsible for invasive plant control projects across rivers of the southwestern U.S. was used to characterize managers’ backgrounds and decisions, and project properties through clustering. Results showed that managers could be classified as “federal multitaskers” or as “educated specialists”. Decisions were characterized by being either “quick and active” or “thorough and careful”. Project goals were either comprehensive with ecological goals or more limited in scope. This study shows that clustering with Gower and PAM can simplify the complex human dimension of this system, demonstrating the utility of this approach for systems frequently composed of mixed-type data such as CHANS. This clustering approach can be used to direct scientific recommendations towards homogeneous groups of managers and project types.

Mű típusa: Cikk, tanulmány, mű
Befoglaló folyóirat/kiadvány címe: Journal of environmental geography
Dátum: 2020
Kötet: 13
Szám: 3-4
ISSN: 2060-467X
Oldalak: pp. 51-60
Nyelv: angol
Kiadás helye: Szeged
Befoglaló mű URL: http://acta.bibl.u-szeged.hu/73788/
DOI: 10.2478/jengeo-2020-0012
Kulcsszavak: Természeti földrajz
Megjegyzések: Bibliogr.: p. 59-60. ; ill. ; összefoglalás angol nyelven
Szakterület: 01. Természettudományok
01. Természettudományok > 01.05. Föld- és kapcsolódó környezettudományok
Feltöltés dátuma: 2021. nov. 15. 10:10
Utolsó módosítás: 2022. jún. 28. 10:34
URI: http://acta.bibl.u-szeged.hu/id/eprint/73886
Bővebben:
Tétel nézet Tétel nézet