Manna Atanu: New Hardy-type integral inequalities. In: Acta scientiarum mathematicarum, (86) 3-4. pp. 467-491. (2020)
Cikk, tanulmány, mű
math_086_numb_003-004_467-491.pdf Restricted to: SZTE network Download (314kB) |
Abstract
The proofs of generalized Hardy, Copson, Bennett, Leindler-type, and Levinson integral inequalities are revisited. It is contemplated to establish new proof of these classical inequalities using probability density function. New integral inequalities of Hardy-type involving the r th order Generalized Riemann–Liouville, Generalized Weyl, Erdélyi–Kober, (k, ν)-Riemann–Liouville, and (k, ν)-Weyl fractional integrals are established through a probabilistic approach. The Kullback–Leibler inequality has been applied to compute the best possible constant factor associated with each of these inequalities.
Item Type: | Article |
---|---|
Heading title: | Analysis |
Journal or Publication Title: | Acta scientiarum mathematicarum |
Date: | 2020 |
Volume: | 86 |
Number: | 3-4 |
ISSN: | 2064-8316 |
Page Range: | pp. 467-491 |
Language: | English |
Related URLs: | http://acta.bibl.u-szeged.hu/73790/ |
DOI: | 10.14232/actasm-019-750-7 |
Uncontrolled Keywords: | Matematika, Integrálegyenlőtlenség |
Additional Information: | Bibliogr.: p. 490-491. ; összefoglalás angol nyelven |
Date Deposited: | 2021. Nov. 15. 13:30 |
Last Modified: | 2021. Nov. 15. 13:30 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/73899 |
Actions (login required)
View Item |