New Hardy-type integral inequalities

Manna Atanu: New Hardy-type integral inequalities. In: Acta scientiarum mathematicarum, (86) 3-4. pp. 467-491. (2020)

[thumbnail of math_086_numb_003-004_467-491.pdf] Cikk, tanulmány, mű
math_086_numb_003-004_467-491.pdf
Restricted to: SZTE network

Download (314kB)

Abstract

The proofs of generalized Hardy, Copson, Bennett, Leindler-type, and Levinson integral inequalities are revisited. It is contemplated to establish new proof of these classical inequalities using probability density function. New integral inequalities of Hardy-type involving the r th order Generalized Riemann–Liouville, Generalized Weyl, Erdélyi–Kober, (k, ν)-Riemann–Liouville, and (k, ν)-Weyl fractional integrals are established through a probabilistic approach. The Kullback–Leibler inequality has been applied to compute the best possible constant factor associated with each of these inequalities.

Item Type: Article
Heading title: Analysis
Journal or Publication Title: Acta scientiarum mathematicarum
Date: 2020
Volume: 86
Number: 3-4
ISSN: 2064-8316
Page Range: pp. 467-491
Language: English
Related URLs: http://acta.bibl.u-szeged.hu/73790/
DOI: 10.14232/actasm-019-750-7
Uncontrolled Keywords: Matematika, Integrálegyenlőtlenség
Additional Information: Bibliogr.: p. 490-491. ; összefoglalás angol nyelven
Date Deposited: 2021. Nov. 15. 13:30
Last Modified: 2021. Nov. 15. 13:30
URI: http://acta.bibl.u-szeged.hu/id/eprint/73899

Actions (login required)

View Item View Item