Hosseini Amin: Characterization of two-sided generalized derivations. In: Acta scientiarum mathematicarum, (86) 3-4. pp. 577-600. (2020)
![]() |
Cikk, tanulmány, mű
math_086_numb_003-004_577-600.pdf Hozzáférés: Csak SZTE egyetemi hálózatról Letöltés (277kB) |
Absztrakt (kivonat)
Let A be a unital semiprime, complex normed ∗-algebra and let f, g, h : A → A be linear mappings such that f and g+h are continuous. Under certain conditions, we prove that if f(p ◦ p) = g(p) ◦ p + p ◦ h(p) holds for any projection p of A, then f and g+h are two-sided generalized derivations, where a◦b = ab+ba. We present some consequences of this result. Moreover, we show that if A is a semiprime algebra with the unit element e and n > 1 is an integer such that the linear mappings f, g : A → A satisfy f(x n ) = Pn j=1 x n−j g(x)x j−1 for all x ∈ A and further g(e) ∈ Z(A), then f and g are two-sided generalized derivations associated with the same derivation. Also, we show that if A is a unital, semiprime Banach algebra and F, G: A → A are linear mappings satisfying F(b) = −bG(b −1 )b for all invertible elements b ∈ A, then F and G are two-sided generalized derivations. Some other related results are also discussed.
Mű típusa: | Cikk, tanulmány, mű |
---|---|
Rovatcím: | Analysis |
Befoglaló folyóirat/kiadvány címe: | Acta scientiarum mathematicarum |
Dátum: | 2020 |
Kötet: | 86 |
Szám: | 3-4 |
ISSN: | 2064-8316 |
Oldalak: | pp. 577-600 |
Nyelv: | angol |
Befoglaló mű URL: | http://acta.bibl.u-szeged.hu/73790/ |
DOI: | 10.14232/actasm-020-295-8 |
Kulcsszavak: | Matematika |
Megjegyzések: | Bibliogr.: p. 598-600. ; összefoglalás angol nyelven |
Feltöltés dátuma: | 2021. nov. 15. 14:09 |
Utolsó módosítás: | 2021. nov. 15. 14:09 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/73905 |
![]() |
Tétel nézet |