Characterization of two-sided generalized derivations

Hosseini Amin: Characterization of two-sided generalized derivations. In: Acta scientiarum mathematicarum, (86) 3-4. pp. 577-600. (2020)

[thumbnail of math_086_numb_003-004_577-600.pdf] Cikk, tanulmány, mű
math_086_numb_003-004_577-600.pdf
Restricted to: SZTE network

Download (277kB)

Abstract

Let A be a unital semiprime, complex normed ∗-algebra and let f, g, h : A → A be linear mappings such that f and g+h are continuous. Under certain conditions, we prove that if f(p ◦ p) = g(p) ◦ p + p ◦ h(p) holds for any projection p of A, then f and g+h are two-sided generalized derivations, where a◦b = ab+ba. We present some consequences of this result. Moreover, we show that if A is a semiprime algebra with the unit element e and n > 1 is an integer such that the linear mappings f, g : A → A satisfy f(x n ) = Pn j=1 x n−j g(x)x j−1 for all x ∈ A and further g(e) ∈ Z(A), then f and g are two-sided generalized derivations associated with the same derivation. Also, we show that if A is a unital, semiprime Banach algebra and F, G: A → A are linear mappings satisfying F(b) = −bG(b −1 )b for all invertible elements b ∈ A, then F and G are two-sided generalized derivations. Some other related results are also discussed.

Item Type: Article
Heading title: Analysis
Journal or Publication Title: Acta scientiarum mathematicarum
Date: 2020
Volume: 86
Number: 3-4
ISSN: 2064-8316
Page Range: pp. 577-600
Language: English
Related URLs: http://acta.bibl.u-szeged.hu/73790/
DOI: 10.14232/actasm-020-295-8
Uncontrolled Keywords: Matematika
Additional Information: Bibliogr.: p. 598-600. ; összefoglalás angol nyelven
Date Deposited: 2021. Nov. 15. 14:09
Last Modified: 2021. Nov. 15. 14:09
URI: http://acta.bibl.u-szeged.hu/id/eprint/73905

Actions (login required)

View Item View Item