Positive linear maps on Hilbert space operators and noncommutative Lp spaces

Bourin Jean-Christophe and Shao Jingjing: Positive linear maps on Hilbert space operators and noncommutative Lp spaces. In: Acta scientiarum mathematicarum, (87) 1-2. pp. 195-206. (2021)

[thumbnail of math_087_numb_001-002_195-206.pdf] Cikk, tanulmány, mű
math_087_numb_001-002_195-206.pdf
Restricted to: SZTE network

Download (200kB)

Abstract

We extend some inequalities for normal matrices and positive linear maps related to the Russo-Dye theorem. The results cover the case of some positive linear maps Φ on a von Neumann algebra M such that Φ(X) is unbounded for all nonzero X ∈ M.

Item Type: Article
Heading title: Analysis
Journal or Publication Title: Acta scientiarum mathematicarum
Date: 2021
Volume: 87
Number: 1-2
ISSN: 2064-8316
Page Range: pp. 195-206
Language: English
Related URLs: http://acta.bibl.u-szeged.hu/73791/
DOI: 10.14232/actasm-020-671-1
Uncontrolled Keywords: Matematika
Additional Information: Bibliogr.: 206. p. ; összefoglalás angol nyelven
Date Deposited: 2021. Nov. 16. 08:20
Last Modified: 2021. Nov. 16. 08:20
URI: http://acta.bibl.u-szeged.hu/id/eprint/73923

Actions (login required)

View Item View Item