Bourin Jean-Christophe and Shao Jingjing: Positive linear maps on Hilbert space operators and noncommutative Lp spaces. In: Acta scientiarum mathematicarum, (87) 1-2. pp. 195-206. (2021)
![]() |
Cikk, tanulmány, mű
math_087_numb_001-002_195-206.pdf Restricted to: SZTE network Download (200kB) |
Abstract
We extend some inequalities for normal matrices and positive linear maps related to the Russo-Dye theorem. The results cover the case of some positive linear maps Φ on a von Neumann algebra M such that Φ(X) is unbounded for all nonzero X ∈ M.
Item Type: | Article |
---|---|
Heading title: | Analysis |
Journal or Publication Title: | Acta scientiarum mathematicarum |
Date: | 2021 |
Volume: | 87 |
Number: | 1-2 |
ISSN: | 2064-8316 |
Page Range: | pp. 195-206 |
Language: | English |
Related URLs: | http://acta.bibl.u-szeged.hu/73791/ |
DOI: | 10.14232/actasm-020-671-1 |
Uncontrolled Keywords: | Matematika |
Additional Information: | Bibliogr.: 206. p. ; összefoglalás angol nyelven |
Date Deposited: | 2021. Nov. 16. 08:20 |
Last Modified: | 2021. Nov. 16. 08:20 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/73923 |
Actions (login required)
![]() |
View Item |