Arnold Loris: Derivative bounded functional calculus of power bounded operators on Banach spaces. In: Acta scientiarum mathematicarum, (87) 1-2. pp. 265-294. (2021)
![]() |
Cikk, tanulmány, mű
math_087_numb_001-002_265-294.pdf Restricted to: SZTE network Download (352kB) |
Abstract
In this article we study bounded operators T on a Banach space X which satisfy the discrete Gomilko–Shi-Feng condition Z 2π 0 |hR(re it, T) 2 x, x i|dt ≤ C (r 2 − 1) kxk kx k , r > 1, x ∈ X, x∗ ∈ X We show that it is equivalent to a certain derivative bounded functional calculus and also to a bounded functional calculus relative to Besov space. Also on Hilbert spaces the discrete Gomilko–Shi-Feng condition is equivalent to powerboundedness. Finally we discuss the last equivalence on general Banach spaces involving the concept of γ-boundedness.
Item Type: | Article |
---|---|
Heading title: | Analysis |
Journal or Publication Title: | Acta scientiarum mathematicarum |
Date: | 2021 |
Volume: | 87 |
Number: | 1-2 |
ISSN: | 2064-8316 |
Page Range: | pp. 265-294 |
Language: | English |
Related URLs: | http://acta.bibl.u-szeged.hu/73791/ |
DOI: | 10.14232/actasm-020-040-y |
Uncontrolled Keywords: | Banach-tér, Matematika |
Additional Information: | Bibliogr.: p. 293-294. ; összefoglalás angol nyelven |
Date Deposited: | 2021. Nov. 16. 09:23 |
Last Modified: | 2021. Nov. 16. 09:23 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/73929 |
Actions (login required)
![]() |
View Item |