Derivative bounded functional calculus of power bounded operators on Banach spaces

Arnold Loris: Derivative bounded functional calculus of power bounded operators on Banach spaces. In: Acta scientiarum mathematicarum, (87) 1-2. pp. 265-294. (2021)

[thumbnail of math_087_numb_001-002_265-294.pdf] Cikk, tanulmány, mű
math_087_numb_001-002_265-294.pdf
Restricted to: SZTE network

Download (352kB)

Abstract

In this article we study bounded operators T on a Banach space X which satisfy the discrete Gomilko–Shi-Feng condition Z 2π 0 |hR(re it, T) 2 x, x i|dt ≤ C (r 2 − 1) kxk kx k , r > 1, x ∈ X, x∗ ∈ X We show that it is equivalent to a certain derivative bounded functional calculus and also to a bounded functional calculus relative to Besov space. Also on Hilbert spaces the discrete Gomilko–Shi-Feng condition is equivalent to powerboundedness. Finally we discuss the last equivalence on general Banach spaces involving the concept of γ-boundedness.

Item Type: Article
Heading title: Analysis
Journal or Publication Title: Acta scientiarum mathematicarum
Date: 2021
Volume: 87
Number: 1-2
ISSN: 2064-8316
Page Range: pp. 265-294
Language: English
Related URLs: http://acta.bibl.u-szeged.hu/73791/
DOI: 10.14232/actasm-020-040-y
Uncontrolled Keywords: Banach-tér, Matematika
Additional Information: Bibliogr.: p. 293-294. ; összefoglalás angol nyelven
Date Deposited: 2021. Nov. 16. 09:23
Last Modified: 2021. Nov. 16. 09:23
URI: http://acta.bibl.u-szeged.hu/id/eprint/73929

Actions (login required)

View Item View Item