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Abstract

In this work, symbolic regression with an evolutionary algorithm called
Cartesian Genetic Programming, has been used to derive formulas capable
to approximate the graph geodetic number, which measures the minimal-
cardinality set of nodes, such that all shortest paths between its elements
cover every node of the graph. Finding the exact value of the geodetic num-
ber is known to be NP-hard for general graphs. The obtained formulas are
tested on random and real-world graphs. It is demonstrated how various
graph properties as training data can lead to diverse formulas with different
accuracy. It is also investigated which training data are really related to each
property.

Keywords: symbolic regression, cartesian genetic programming, geodetic
number

1 Introduction

Geodetic number is the minimal-cardinality set of nodes, such that all shortest
paths between its elements cover every node of the graph [16]. Calculating the
geodetic number proved to be an NP-hard problem for general graphs [5]. The
integer linear programming (ILP) formulation of geodetic number problem was
given in [16], containing also the first computational experiments on a set of random
graphs.

The trivial upper bound for the geodetic number is g(G) ≤ n. Chartrand
et al. [10] proved that g(G) ≤ n − d + 1, where d is the diameter of G. Other
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upper bounds are also given in [6, 30, 31], but these are concerning specific graph
structures.

Chakraborty et al. [9] proposed an algorithm to approximate the geodetic num-
ber on edge color multigraph. A polynomial algorithm to compute the geodetic
number of interval graphs has been proposed in [12]. Greedy-type algorithms are
developed in [3] to find upper bound of the geodetic number on general graphs
based on shortest paths information.

There are varied applications of geodetic sets and geodetic number. Clearly,
they can be applied in computational sociology as it is hinted in [7, 31]. The defi-
nition of convexity of set of nodes in a graph [18] is a somewhat converse property
to geodetic set. Related notions are the graph hull number [14] and the domination
number [15]. All these concepts have practical applications, e.g., in public trans-
portation design [9], in achievement and avoidance games [8], in location problems
[25], in maximizing the switchboard numbers on telephone tree graphs [23], in mo-
bile ad hoc networks [26], and in design of efficient typologies for parallel computing
[24].

Graph properties are certain attributes that could make the structure of the
graph understandable. Occasionally, standard methods to calculate exact values of
graph properties cannot work properly due to their huge computational complexity,
especially for real-world graphs. In contrast, heuristics and metaheuristics are
alternatives which have proved their ability to provide sufficient solutions in a
reasonable time. However, in some cases even heuristics fail to succeed, particularly
when they need some less easily obtainable global information of the graph. The
problem thus should be dealt with in a completely different way by trying to find
features that are related to the property, and based on these data build a formula
which can approximate the graph property.

Topological representation is the simplest way to represent graphs, where the
graph is a set of nodes and edges. However, the spectral representation (e.g., ad-
jacency matrix, Laplacian matrix) can significantly help to describe the structural
and functional behavior of the graph. Adjacency matrix is a square matrix in
which a non-zero element indicates that the corresponding nodes are adjacent. Im-
plementations of well known algorithms like Dijkstra’s or Floyd–Warshall algorithm
usually use the adjacency matrix to calculate the shortest paths for a given graph.
The diameter of a graph is the length of its longest shortest path. It is known that
the diameter of a given graph is small if the absolute value of the second eigenvalue
of its adjacency matrix is small [11]. Laplacian matrix is a square matrix which
can be used to calculate, e.g., the number of spanning trees for a given graph.
The eigenvalues of the Laplacian matrix are non-negative, less than or equal to the
number of nodes, and less than or equal to twice the maximum node degree [4].
Considering these important relations between the graph properties, eigenvalues
of spectral matrices and more parameters (to be discussed in the forthcoming sec-
tions), which can be calculated easily even for complex graphs, symbolic regression
is one of the good choices to verify the connection between graph parameters and
properties, and use such parameters for approximating hard to compute network
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properties.

Symbolic regression (SR) is a mathematical model which attempts to find a
simple formula such that it fits a given output in term of accuracy based on a set
of inputs. In conventional regression techniques, a pre-specified model is proposed,
while symbolic regression avoids a particular model as a starting point to give a
formula. Instead, in SR, initial formulas are formed randomly by combining the
inputs: parameters, operators, and constants. Then, new formulas are assembled
by recombining previous formulas by using one of the evolutionary algorithms,
which is the genetic programming in our work. Symbolic regression practically
has infinite search space, hence infinite formulas to assemble. Nevertheless, this
can be considered as an advantage when symbolic regression uses an evolutionary
algorithm called genetic programming, which requires diversity to efficiently explore
the search space, ensuring a highly accurate formula.

The inputs are predefined parameters and constants. SR combines these pa-
rameters and constants by a set of given arithmetic operators (such as +,−,×,÷,
etc.) to assemble a formula. In the papers by Schmidt and Lipson, symbolic re-
gression was used to find physical laws based on experimental data [28], and then
they used it to find analytical solutions to iterated functions of an arbitrary form
[29]. Even though there are some algorithms in the literature that use symbolic
regression apart from genetic programming [21], essentially genetic programming
is considered as one of the most popular algorithms applied by symbolic regression
[19].

The rest of the paper is structured as follows. Section 2 discusses the specific
genetic programming approach we used together with the list of graph properties.
Section 3 discusses the methodology used to approximate the graph geodetic num-
ber. Section 5 reports the numerical results to show the efficiency of the formulas
we obtained. The conclusion of our work is presented in Section 6. In the Appendix,
we report all the formulas we obtained during this work.

2 Preliminaries

2.1 Cartesian Genetic Programming

One of the most famous genetic programming tools is called Cartesian Genetic Pro-
gramming (CGP) developed by Miller [22]. CGP is an iteration-based evolutionary
algorithm and works as it follows. CGP begins by creating a set of initial solutions,
from which the best solution is chosen by evaluating these solutions based on the
fitness function. Then these solutions will be used to create the next generation in
the algorithm. The next generation’s solutions will be a mixture of chosen solutions
from the previous generation’s, where the new generation’s solutions should not be
identical to the previous ones’, which can be done by mutation. Mutation is used
to change small parts of the new solutions and it usually occurs probabilistically for
CGP. The mutation rate is the probability of applying the mutation on a specific
new solution. Eventually, the algorithm must terminate. There are two cases in
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which this occurs: the algorithm has reached the maximum number of generations,
or the algorithm has reached the target fitness. At this point, a final solution is
selected and returned.

Cartesian Genetic Programming has several parameters to set up, which cer-
tainly have effects on its performance. The specific parameters used in this paper
are detailed later in Section 4.3.

2.2 Geodetic Number

A simple connected graph is denoted by G = (V,E), where V is the set of nodes
and E is the set of edges.We have N = |V | and M = |E|. Geodetic number is the
minimal-cardinality set of nodes, such that all shortest paths between its elements
cover every node of the graph [16]. The formal description is as follows. Given
i, j ∈ V , the set I[i, j] contains all k ∈ V which lies on any shortest paths between
i and j. The union of all I[i, j] for all i, j ∈ S ⊆ V is denoted by I[S], which is
called as geodetic closure of S ⊆ V . Formally,

I[S] := {x ∈ V : ∃i, j ∈ S, x ∈ I[i, j]}.

The geodetic set is a set S for which V = I[S]. The geodetic number of G is

g(G) := min{|S| : S ⊆ V and I[S] = V }.

2.3 Graph Properties

Adjacency matrix. The adjacency matrix is a square |N | × |N | matrix A such
that its element Aij is equal to one when there is an edge from node i to node
j, and zero when there is no edge.

Shortest path. The series of nodes u = u0, u1, . . . , uk = v, where ui is adjacent
to ui+1, is called a walk between the nodes u and v. If ui �= uj (∀i, j), then it
is called a path. The path’s length is k. Given all paths between nodes u and
v, a shortest path is a path with the fewest edges. Shortest paths are usually
not unique between two nodes.

Diameter. Graph diameter is the length of the longest path among all the shortest
paths in the graph.

Degree, degree-one node. The degree of a node is the number of edges linking
the node to other nodes in the graph, denoted by deg(v). If deg(v) = 1,
which means there is only one edge connecting the node, this node is called
a degree-one node. It is known from the literature that degree-one nodes are
always part of the geodetic set, see [17]. The number of degree-one nodes in
the graph is denoted by δ1.

Laplacian matrix. The Laplacian matrix is a square |N | × |N | matrix L such
that L = D−A, where A is the adjacency matrix and D is the degree matrix,
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i.e., the elements in its main diagonal are defined as Dii = deg(vi), where
vi ∈ V (i = 1, . . . , N).

Simplicial node. node v is called a simplicial node if its neighbors form a clique
(complete graph), namely, every two neighbors are adjacent. If G is a non-
trivial connected graph and v is a simplicial node of G, then v belongs to
every geodetic set of G, see [1]. The number of simplicial nodes in the graph
is denoted by σ.

Betweenness centrality. Betweenness centrality (BC) for a specific node v is the
proportion of all the shortest paths pass through this node. It is shown in [17]
that if G is a star graph with n nodes then g(G) = n − 1, where the central
node with the highest BC, that all the shortest paths passing through, will
never be in the geodetic set. Moreover, in the tree graph G with k leaves
g(G) = k, that means the leaves with low BC are geodetic nodes while the
root and the parents with higher BC are not part of the geodetic set.

3 Methodology

Although there are not many papers proposing the idea of using symbolic regres-
sion for approximating graph properties, the work by Martens et al. [20] was a good
starting point for us. They used the eigenvalues of the Laplacian matrix and of
the adjacency matrix as inputs for CGP, the experiments made on real-world net-
works to optimize the diameter and isoperimetric number. In our case, we aim at
obtaining results for the geodetic number on random and real-world graphs. Thus,
we investigated graph properties that are strongly related to the geodetic number,
which have been discussed in Section 2.3.

We have used CGP-Library which is a cross-platform Cartesian Genetic Pro-
gramming implementation developed by Andrew Turner1. The library is written
in C and it is compatible with Linux, Windows and MacOS.

In order to use CGP a set of training data is needed. Each training data will
contain instances and each instance contains two parts: (i) parameters of graph
properties and chosen constants as inputs, (ii) exact value of the graph property
as output. Thus, CGP will attempt to join the parameters and constants by using
arithmetic operators to achieve the output. The set of arithmetic operators we
have used in all the cases is {+,−,×,÷,√x, x2, x3}. For the graph properties we
have used the ones discussed in Section 2.3: eigenvalues of the adjacency matrix
and Laplacian matrix, number of degree-one nodes, number of simplicial nodes,
etc. It will be shown that these parameters strongly related to the graph geodetic
number so they can be beneficial inputs for CGP. The classification of these inputs
into categories will be shown in the following section which reports the results of
our numerical experiments.

1http://www.cgplibrary.co.uk/
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4 Parameters of the Numerical Experiments

The main goal of our experiments was to investigate the graph geodetic number for
random graphs and real-world graphs. Since the most related paper to our work of
Märtens et al. [20] contains results for the graph diameter (which is, similarly to the
geodetic number, also based on shortest paths) we report our results obtained for
the diameter and compare these values. The metrics used to measure the goodness
of a formula are mean absolute error and mean relative error.

In the following subsection we describe the graphs used for the training as well
as for the validation.

4.1 Random Graphs

Set of 120 random graphs created by using the three well-know generative models:
Erdős-Rényi [13], Watts-Strogatz [32], and Barabási-Albert [2]. Regarding the
number of nodes and edges the following approach were used:

• the number of nodes were n = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, and

• for the number of edges we followed the scheme as in [16]:

– for each case one can have maximum n · (n− 1)/2 edges,

– and we took 20%, 40%, 60% and 80% of this maximum number of edges.

4.2 Real-World Graphs

As a set of real-world graphs we used 10 graphs from the Network Repository2 [27].
For the training part, 120 connected sub-graphs of these networks with different
sizes (14 ≤ N ≤ 140) were created from this set by using the following simple
procedure. For a given real-world graph G(V,E), first, a random set W ⊂ V of
nodes were selected. Then, the induced sub-graph of G with node set W is taken.
This sub-graph Ĝ might not be connected, so, as a final step, the largest connected
component of Ĝ is selected.

4.3 CGP Parameters

CGP needs predefined parameters to work properly. Table 1 summarizes the values
of the parameters we have used in the experiments. The details of the parameters
used are the following.

Evolutionary Strategy The evolutionary strategy uses selection and mutation
as search operators. The usual version used by CGP is the one which we also
apply in this paper, which is called (1+4)-ES. Here, the procedure selects the
fittest individual as the parent for the next generation, from the combination
of the current parent and the four children.

2http://networkrepository.com/
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Table 1: Parameters of CGP

Parameter Value
Evolutionary Strategy (1 + 4)-ES

Node Arity 2
Mutation Type Probabilistic
Mutation Rate 0.05
Fitness Function Supervised Learning
Target Fitness 0.1

Selection Scheme Select Fittest
Reproduction scheme Mutation Random Parent
Number of generations 200, 000

Update frequency 100
Threads 1

Function Set add sub mul div sqrt sq cube

Node Arity Each node is assumed to take as many inputs as the maximum node
arity value, namely, the maximum number of inputs connected to a specific
node.

Mutation Type The mutation, as basic search operator of the evolutionary strat-
egy, is performed by adding a random vector to the current solution. In our
paper this is done probabilistically.

Mutation Rate The probability of applying mutation on a specific solution.

Fitness Function The supervised learning fitness function applies to each solu-
tion and assigns a fitness value to how closely the solution output match the
desired output. Based on that, the solutions with better fitness value will be
chosen for next generations.

Target Fitness The fitness function used in this work is the absolute differences
(absolute error) between the generated and predefined outputs, where the
best solution is the one with absolute difference less than or equal to the
given value.

Selection Scheme The applied fittest selection schemes select the best solutions
based on the closest fitness obtained by the solution.

Reproduction scheme There are two ways in which new children can be created
from their parents. In the first method the child is simply a mutated copy of
the parent. In the second method the child is a combination from both parents
with or without mutation. This latter method is referred to recombination.
Usually, CGP-Library uses the random parent reproduction scheme which
simply creates each child as a mutated version of its parents.
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Number of generations How many iterations CGP will apply before termina-
tion, unless one of the solutions obtained the target fitness.

Update frequency The frequency at which the user is updated on progress,
where the progress details shown on the terminal.

Threads The number of threads the CGP library will use internally.

Function Set the arithmetic operators used by CGP to combine the inputs.

4.4 Training data parameters

The list of parameters used as input in the training data, separated into different
sets as follows.
For random graphs:

1) N,M, λN , λi (i = 1, 2, 3)

2) N,M,μN−1, μi (i = 1, 2, 3)

3) N,M, λi, λN−i−1 (i = 1, . . . , 5)

4) N,M,μi, μN−i−1 (i = 1, . . . , 5)

5) N,M, λi, λN−i−1 (i = 1, . . . , 5) and constants 1, 2, 3, 4, 5

6) N,M,μi, μN−i−1 (i = 1, . . . , 5) and constants 1, 2, 3, 4, 5

where N is the number of nodes, M is number of edges, λi is the i-th eigenvalue of
adjacency matrix, μi is the i-th eigenvalue of Laplacian matrix.

For real-world graphs:

1) N,M, δ1, σ, and constants 1, 2, 3, 4, 5

2) N,M, δ1, σ, λi, λN−i−1 (i = 1, . . . , 5)

3) N,M, δ1, σ, μi, μN−i−1 (i = 1, . . . , 5)

4) N,M, δ1, σ, λi, λN−i−1 (i = 1, . . . , 5) and constants 1, 2, 3, 4, 5

5) N,M, δ1, σ, μi, μN−i−1 (i = 1, . . . , 5) and constants 1, 2, 3, 4, 5

where δ1 is the number of nodes with degree one in the graph, σ is the number of
simplicial nodes in the graph.

Note that in Section 2.3 the betweenness centrality was also discussed as shortest
path based graph centrality measure, which has relation to the geodetic number. In
the conducted experiments we were trying to involve the betweenness values of the
nodes by putting them into categories. However, none of the best approximating
formulas we have obtained by the symbolic regression included this information.
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5 Results

To obtain the formulas for either random graphs or real-world graphs, we have run
the CGP dozen times for each different category (see Section 4.4 for the list of
these categories). Amongst all the formulas we choose the best ones according to
its output’s absolute error and relative error compared to the exact value. Hence,
the best formulas gave the smallest error. The full list of the chosen formulas are
given in the Appendix. In the following we report and discuss the top formulas for
each case.

Both the diameter and the geodetic number are of course integers. However, the
obtained formulas by the symbolic regression usually result in non-integer number.
Hence, in the tables which report the results, first we rounded the values given by
the formulas and then the errors were calculated.

Consequently, the results are reported in two types of tables. For the random
graphs, only the summary of the approximation errors are shown. Regarding the
real-world graphs, the full details are given, i.e., the calculated values of the diam-
eter as well as the geodetic number using the best formulas are presented.

5.1 Diameter

5.1.1 Random graphs

Table 2 summarizes the results obtained for the different random graphs, where (6)
gives the best approximation:

N + λN−2 + 4√
M

.

For the investigated set of random graphs, λN−2 is in the range [−7,−1], which is,
on average,cancelled out by the constant factor +4 in formula (6). Moreover, for
these graphs we have M = O(N), which means that formula (6) is roughly O(

√
N).

The square root function, at least in the range where our experiments were done,
is close to the logarithm function. It is well know that the diameter of (random)
graphs can be estimated by log(N). The symbolic regression did not use the log

Table 2: Diameter validations on random graphs

formula (2) (3) (4) (5) (6) (7)

ER
mean absolute error 1 1.5 0.6 6.05 0.4 0.9
mean relative error 0.4 0.53 0.19 2.46 0.1 0.33

BA
mean absolute error 1.3 0.8 0.35 4.2 0.1 0.55
mean relative error 0.52 0.28 0.14 1.86 0.03 0.2

WS
mean absolute error 1.7 1.7 0.5 6.15 0.35 1.15
mean relative error 0.57 0.57 0.18 2.48 0.1 0.4
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function, as it was not in its function set, see Table 1. Nevertheless, it is interesting
to see that it found formula (6), which is close to the logarithm of the number of
nodes in the graphs.

5.1.2 Real-world graphs

For the diameter of real-world graphs, as it is shown in Table 3, the formula (15)
was the best by giving very close values to the exact diameter:

2M

λ1λ2
2

+
λ2
5 + 2(λN − λ3) + 50

λ1
+

2

λ1λ2

Closer inspection reveals that the last term in the formula usually has very small
values, below 0.1. The other parts of (15) contribute by roughly equal quantity
to the final result. The formula includes the first three, the fifth and the last
eigenvalue of the adjacency matrix, as well as the number of edges. Thus, it is
a nice demonstration of the surprising power of symbolic regression that it can
find non-trivial combination of graph features which can well approximate a graph
measure such as diameter. On the other hand, the computational cost is O(N3)
due to the need of calculating the eigenvalues. This means that it has the same
cost as directly applying an exact algorithm such as Floyd-Warshall to obtain the
diameter.

Table 3: Diameter validations on real-world graphs

network N M D [20] (8) (9) (10) (11) (12) (13) (14) (15)
ca-netscience 379 914 17 21 13 9 14 19 4 17 12 10
bio-celegans 453 2025 7 7 5 4 8 12 3 8 6 4

rt-twitter-copen 761 1029 14 16 13 14 14 19 12 17 20 11
soc-wiki-vote 889 2914 13 10 11 8 11 15 7 11 12 6
ia-email-univ 1133 5451 8 6 9 9 7 12 9 8 13 10
ia-fb-messages 1266 6451 9 7 10 8 8 12 7 9 11 6

bio-yeast 1458 1948 19 19 14 28 15 20 18 18 39 18
socfb-nips-ego 2888 2981 9 52 14 14 16 23 3 20 21 7

web-edu 3031 6474 11 36 14 11 15 22 13 19 16 8
inf-power 4941 6594 46 98 14 38 17 24 71 20 53 48

mean absolute error: 13.3 5.6 4 5.2 6.9 6.2 5.2 6.4 3.3
mean relative error: 0.92 0.28 0.27 0.27 0.53 0.37 0.31 0.48 0.27

As we can see, formulas (9) and (10) resulted the same mean relative error than
(15), however, they were worse by the mean absolute error. Formula (10) involves
some of the eigenvalues of the Laplacian matrix, and some constants. Formula (9)
uses some of the eigenvalues of the adjacency matrix, number of nodes and it also
uses the number of simplicial nodes. Thus, these formulas, although not giving
as precise approximations as (15), are built up by some other graph parameters
compared to (15).
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Note that in the 5th column of Table 3 we included the results reported in [20]
for the same set of graphs. Clearly, all the formulas we found gave smaller errors
than the best solution from [20].

5.2 Geodetic number

In order to compare the approximations given by the formulas found by symbolic
regression, the computation of the exact geodetic number of the input graphs were
needed. For that, we used the integer linear programming formulation proposed in
[16].

5.2.1 Random graphs

The results for the geodetic number of random graphs can be seen in Table 4.
Formula (16) gave the best approximations for the ER and WS graphs:√

N3/2

λ1
− λN−4N

3/2

λ2
1 +N3/2

.

In case of BA graphs formula (17) resulted in the lowest error:

μ2
4

μ2μN−3
+

√
N − μ3

Practically, both formulas need the computation of all eigenvalues, thus their com-
putational cost is O(N3). The exact computation of the geodetic number is NP-
hard, whereas formula (16) and (17) can be evaluated in polynomial time.

Note that overall, formula (16) gives the best approximation for all three types
of random graphs. Investigating the values one obtains by evaluating formula (16)
on random graphs, it turns out that the second part is roughly half of the first part.
Thus, a simpler formula would be

3

2

√
N3/2

λ1
.

Table 4: Geodetic number validations on random graphs

formula (16) (17) (18) (19)

ER
mean absolute error 0.92 1.31 1 1.07
mean relative error 0.1 0.16 0.16 0.13

BA
mean absolute error 2.15 1 1.775 2.92
mean relative error 0.18 0.08 0.17 0.26

WS
mean absolute error 0.54 1.38 0.92 0.69
mean relative error 0.04 0.19 0.12 0.08
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On average, this gives a bit more pessimistic approximation (namely, mean average
error = 1.89, and mean relative error = 0.1). However, it needs the computation
of the first dominant eigenvalue only, which costs O(N2).

5.2.2 Real-world graphs

Table 5 shows the results for the real-world graphs. It is important to emphasize
here that since the real-world graphs in Table 5 have hundreds of nodes and thou-
sands of edges, the calculation of the exact geodetic number, using the integer linear
programming formulation proposed in [16], requires enormous computational time.
For the three largest graphs (socfb-nips-ego, web-edu and inf-power) we were
unable to compute the exact geodetic numbers due to time constraints, so they are
left out from the comparison.

In this case the best approximation was obtained by the surprisingly compact
formula (27):

δ1 + σ +
√
M − 2.

The number of degree-one nodes and the number of simplicial nodes appear in
formula (27) because these nodes must be part of the geodetic set, as it was already
mentioned in Section 2.3. In fact, these two factors appear in all the best formulas
we have found, see Appendix. In the ca-netscience collaboration network and
in the bio-celegans there are lots of simplicial nodes and not many degree-one
nodes. For the other graphs it is just the other way around, i.e., the number of
simplicial nodes is not more than 10. The remaining part of the geodetic number is
approximated by

√
M −2, which contributes to the approximation on these graphs

1/3 at most. The computational cost of formula (27) is O(NM).

Table 5: Geodetic number validation on real-world graphs.

network N M g(G) (20) (21) (22) (23) (24) (25) (26) (27)
ca-netscience 379 914 253 208 151 190 198 194 206 195 200
bio-celegans 453 2025 172 213 115 119 195 188 225 203 146

rt-twitter-copen 761 1029 459 436 437 438 439 428 446 442 444
soc-wiki-vote 889 2914 275 247 212 220 222 231 247 259 245
ia-email-univ 1133 5451 244 225 182 194 181 192 208 196 233
ia-fb-messages 1266 6451 318 266 254 264 276 280 296 313 311

bio-yeast 1458 1948 784 763 761 766 761 751 775 762 773
mean absolute error: 32.7 56.1 44.9 39.9 39.0 29.7 28.1 21.9
mean relative error: 0.12 0.21 0.17 0.14 0.13 0.12 0.11 0.08

5.2.3 Improvement

We have listed the best formulas and we verified them with specific random and
real-world graphs. Our aim is to derive a general formula for the geodetic number
that can give good approximation for any real-world graph. For that we wanted to
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try and make formula (27) even sharper. One of the possible ways is to use linear
regression.

For linear regression the generalized formula containing multipliers as variables
has the form

a · δ1 + b · σ + c ·
√
M − d

The variables were initialized as a = 1, b = 1, c = 1, d = 1. The linear regression
finds the values of the variables a, b, c and d minimizing the mean absolute error of
the approximated value.

As a result, linear regression found that a = 0.99, b = 0.79, c = 0.97, d = 0.99,
so the formula can be written as

0.99 · δ1 + 0.79 · σ + 0.97 ·
√
M − 0.99. (1)

5.2.4 Validation of improved formula

For validating the quality of the formula (1), 120 sub-graphs (where 31 ≤ N ≤ 485)
from real-world graphs in Table 5 have been used. These graphs were created
by the same procedure described in Section 4.2. Then the geodetic number was
calculated twice: the exact value by using the ILP formulation [16], and then
the approximation using the formula (1) obtained by linear regression. Figure 1
shows a comparison between the two values for the sub-graphs. It is clear that
the approximations are close to the exact g(G) values. For all the 120 graphs we
obtained mean absolute error = 12.27 and mean relative error = 0.18 by using
formula (1). This is just a slight improvement though, since formula (27) gives
mean absolute error = 12.37 and the same relative error as (1).

There are two gaps in the figure indicating that for some graphs the approxima-
tion is much less than the exact value. For these graphs, the number of simplicial
nodes was zero. Since formula (1) is the summation of the number of simplicial
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Figure 1: Exact g(G) and values given by the optimized formula (1)
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nodes, the number of degree-one nodes, and the number of edges, if one of these
values is zero that will cause these gaps. For this type of graphs, where σ and δ1
are close to zero, it might be more beneficial to use one of the formulas we found for
the random graphs. For example, using formula (16) we get mean absolute error
= 39.87 and mean relative error = 0.57 for these graphs, while formula (1) on the
same graphs gives mean absolute error = 40.87 and mean relative error = 0.6.

6 Conclusion

Our work reports that symbolic regression is successfully applicable to derive opti-
mized formulas for graph geodetic number g(G). The best formula we found is very
simple and it can estimate the value of g(G) if the number of edges, the number
of degree-one nodes and the number of simplicial nodes are known. Thus, the ap-
proximation of the geodetic number can be obtained in a reasonable computational
time, even for graphs with thousands of nodes and edges, while obtaining the exact
geodetic number is an NP-hard problem. We demonstrated how different training
sets will lead to different formulas with different accuracy so that we can claim
that finding good training data is essential. Hence, finding the best parameters of
training graphs, where these parameters are highly related to the graph property
are the most important part for symbolic regression to approximate in a better
manner.
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Appendix

The best formulas, with respect to mean absolute deviation, found by CGP are
listed for the different graph types and graph properties.

Formulas for random graphs diameter. The results obtained with these for-
mulas are shown in Table 2. √

N

λ1
+

√
2N

λ1
− λ3 + 1 (2)

N(M + μN−2)
3(2N3 + (M + μN−2)

3(N + μ1))

(N3 + μ1(M + μN−2)3)2
(3)

N + 2
√
λ1 − 2λ3

λ1
(4)

N(M +N − μN−2)

2(N + μ1μ4)
(5)

N + λN−2 + 4√
M

(6)

μN−2(3N − μ1)

NμN + μ1μN−2
(7)

Formulas for real-world graphs diameter. The results obtained with these
formulas are shown in Table 3.
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((

√
(3−

√
μN−4))

2((3−√μN−4)
2 − 2)) (11)

N + 2μN−3δ1 + μ2 + μ5 + σ − 2(μN−4 − 5)3

μN−3δ1 + μ2 + μ3 + μN−4 + σ
(12)

μN−3 − 2μ2
N−4 − ((μN−4 − 1)3 −

√
3)3 (13)

√
2

√
λN +

λ3
1

(λ1 + λN−4)3
+

λ1 +N + σ

λ1 + λN−4
(14)

2M

λ1λ2
2

+
λ2
5 + 2(λN − λ3) + 50

λ1
+

2

λ1λ2
(15)

Formulas for random graphs geodetic number. The results obtained with
these formulas are shown in Table 4.√
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μ2
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Formulas for real-world graphs geodetic number. The results obtained with
these formulas are shown in Table 5.
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