
Acta Cybernetica 25 (2021) 171–185.

Quadric Tracing: A Geometric Method for

Accelerated Sphere Tracing of Implicit Surfaces∗

Csaba Bálintab and Mátyás Kiglicsac

Abstract

Sphere tracing is a common raytracing technique used for rendering im-
plicit surfaces defined by a signed distance function (SDF). However, these dis-
tance functions are often expensive to compute, prohibiting several real-time
applications despite recent efforts to accelerate them. This paper presents
quadric tracing, a method to precompute an augmented distance field that
significantly accelerates rendering. This novel method supports two config-
urations: (i) accelerating raytracing without losing precision, so the original
SDF is still needed; (ii) entirely replacing the SDF and tracing an interpo-
lated surface. Quadric tracing can offer 20% to 100% speedup in rendering
static scenes and thereby amortizes the slowdown caused by the complexity
of the geometry.

Keywords: computer graphics, sphere tracing, signed distance function

1 Introduction

Most implicit surface representations require conversion to a triangle list for effi-
cient, real-time visualization. Distance-based representations are such an exception
where sphere tracing [8] enables raytracing for the whole scene within milliseconds,
using the GPU. The representation supports a range of set operations, such as
union, intersection, subtraction, and real-time offsets [9]. This allows any CSG tree
to be constructed from a large set of primitives, set operations, and transforma-
tions [6]; however, the function evaluation time and convergence slow drastically
with scene complexity. This paper aims to amortize the scene complexity depen-
dence of raytracing an implicit surface defined by a signed distance function and
thereby greatly accelerate render times.

∗EFOP-3.6.3-VEKOP-16-2017-00001: Talent Management in Autonomous Vehicle Control
Technologies — The Project is supported by the Hungarian Government and co-financed by
the European Social Fund. Csaba Bálint was also supported by the ÚNKP-20-3 New National
Excellence Program of the Ministry for Innovation and Technology.

aEötvös Loránd University, Budapest, Hungary
bE-mail: csabix@inf.elte.hu, ORCID: 0000-0002-5609-6449
cE-mail: kiglics@caesar.elte.hu, ORCID: 0000-0003-4957-7495

DOI: 10.14232/actacyb.290007

172 Csaba Bálint and Mátyás Kiglics

For this, we generate a cache structure that allows the scene to be traversed with
rays more quickly, yet it can slow down near the surface for the utmost accuracy.
This structure and the accelerating algorithms must possess the following three
properties to improve on existing methods:

• The structure must be concise since three-dimensional data can quickly fill
up the available GPU memory.

• Query operations have to be efficient for significant render time reduction
during raytracing.

• The preprocessing step should be fast enough to accelerate raytracing, even
when called in every frame for dynamic scenes.

Our solution relies on special quadrics, that is, second-degree algebraic surfaces.
We define these quadrics pivoted around a given point and an arbitrary direction
in space. Each of the enclosed quadratic regions we generate will either contain
the entirety of the scene geometry or none of it, so we call these bounding and
unbounding quadrics, respectively. Our preprocessing step consists of generating
quadric parameters for a 3D grid of values, while the rendering step accelerates
raytracing by intersecting the rays with these quadrics first.

This paper focuses on presenting the quadric tracing algorithm and applying it
to accelerate sphere tracing utilizing a uniform grid of quadric parameters.

Previous work Since the first appearance of the sphere tracing algorithm [8],
several variants of accelerations and enhancements have been released. For clarity,
we refer to the sphere tracing method published in [10] as the relaxed sphere tracing
algorithm, and we call enhanced sphere tracing the algorithm presented in [3]. The
relaxed sphere tracing [10] takes larger steps determined by a scalar, and if the
radius is too large, it reverts to the basic sphere tracing size. The more recently
published enhanced sphere tracing [3] uses the radii calculated in the two previous
steps to efficiently approximate planar surfaces. These methods mainly attempt
to increase the size of the steps taken on the ray during rendering; hence, the
number of SDF evaluations are minimized. The algorithm applications include
light visibility computation such as soft shadows [5], ambient occlusion [18], and
global illumination. Various utilizations are also known, like room impulse response
estimation [11], or deep learning based implicit signed distance functions [13]. Most
of the algorithms above can be improved by quadric tracing.

2 Preliminaries

An f : R3 → R function is a signed distance function (SDF) if it is continuous and

|f(p)| = d(p, {f = 0}) (p ∈ R3) ,

as stated in [4, 15]. Where d(p, {f = 0}) = inf{‖p − x‖2 : x ∈ {f = 0}} is the
Euclidean distance from the {f = 0} = {x ∈ R3 : f(x) = 0} surface. The {f <

Quadric Tracing 173

Figure 1: The sphere tracing algorithm takes distance sized steps along the ray.
These distance sized steps visualized here in 2D by the red unbounding circles
surrounding each signed distance function evaluation point. This image is reused
from [4] with the permission of the authors.

0} = {p ∈ R3 : f(p) < 0} region is the inside, while the {f > 0} region is considered
the outside of the represented geometry. Set operations can be performed on objects
defined by SDFs by taking the point-wise minimum or maximum of the operand
functions for union or intersections, respectively [8].

Various sphere tracing algorithms exist for surface visualization. These raytrac-
ing techniques often start a ray through each pixel of the virtual camera and march
along the ray, taking distance sized steps [8]. This is because, for any p ∈ R3 point,
there are no surface points within f(p) distance: this is called the unbounding
sphere. Hence, sphere tracing is often visualized as a series of unbounding spheres
or circles along a ray as in Figure 1. When the point-to-surface distance becomes
negligible, the surface is reached.

However, all sphere tracing algorithms slow down near the surface regardless
of the direction taken [10, 3, 5]. The only exception is when the derivative of f
is known, and the geometry is convex, in which case huge steps can be taken [8].
This is because, instead of an unbounding sphere, we can draw a separating plane
with normal ∇f(p) and surface point p − f(p) · ∇f(p). Note that if f : R3 → R
is an exact signed distance function, then if the derivative exists at p ∈ R3, it is
of unit length: ‖∇f(p)‖2 = 1. This can often produce long steps, even when the
evaluation point is close to the surface. This method can be extended to the union
of concave objects, but the average step size will rapidly decrease, and function
evaluation time will increase.

Nonetheless, the surface is often concave, or the derivative might be undefined
or unknown. For this reason, we generalize the unbounding sphere and separating
plane approach to unbounding quadrics [12] for any SDF. Our method consists of
two steps. During precomputation, we store distance values in a regular grid. For
each cell, the normal vector ∇f(p) is stored along with a k ∈ [−1, 1] parameter
describing the shape of the quadric. Therefore, the quadric is parameterized with a

174 Csaba Bálint and Mátyás Kiglics

3D direction vector and a scalar value. During the rendering step, quadric tracing
intersects the ray with the precomputed quadric to accelerate tracing convergence.

3 Conic sections of k ∈ [−1, 1]
We chose to use the revolution of conic sections for the quadratic proxy surfaces
such that a single scalar value k ∈ [−1, 1] we can encode a large variety of surfaces
around the axis defined by ∇f(p). This section details how the 2D conics are
constructed to generate both bounding and unbounding regions. Let the y-axis
denote the axis of revolution such that the symmetric curve going through the
origin has the following form:

A(k) · x2 +B(k) · y2 + C(k) · y = 0 (A,B,C : [−1, 1]→ R). (1)

The coefficients are functions of the k ∈ [−1, 1] parameter, and these control the
shape, eccentricity, and curvature of the conic [17]. We found the following three
functions to change the conic section in the desired, continuous way from a circle
centered at (0,−0.5) to another around (0, 0.5) as k increased from -1 to 1.

A := A(k) := k2 , B := B(k) := 2

(
|k| − 1

2

)
, C := C(k) := −k (2)

This choice allows the conic sections seen on Figure 2 to turn inside out at k = 0,
and describe both bounded |k| > 1

2 and unbounded |k| ≤ 1
2 regions visualized. For

brevity, we omit the function notation.

Figure 2: Conic sections with varying k ∈ [−1, 1]. For k = ±1, the conic section is
a circle; for k = ±0.5, a parabola; for k ∈ (0.5, 1) or k ∈ (−1,−0.5), an ellipse; and
for k ∈ (0, 0.5) or k ∈ (−0.5, 0), it is a branch of a byperbola.

Quadric Tracing 175

We obtain the polar parametrization of these conics by intersecting them with
t ∈ [−π, π) angled rays from the origin. The distance from the origin to the
intersection point will be a function of this angle, r(t); so by substituting the polar
coordinates into the implicit form in (1), we can solve for this r(t):

A · (r(t) · cos t)2 +B · (r(t) · sin t)2 + C · r(t) sin t = 0 .

Assuming that r(t) �= 0 yields the polar parametrization s : [−π, π) → R2 of the
conic section:

r(t) =
−C · sin t

A · cos2 t+B · sin2 t =⇒ s(t) :=

[
cos t · r(t)
sin t · r(t)

] (
t ∈ [−π, π)) (3)

For values of k ∈ (−1
2 ,

1
2

)
, the s(t) describes a hyperbola with an unwanted branch.

Let L := L(k) ∈ [−π, π) denote the value where r(t) has a singularity. Thus, we
can restrict s(t) to the [−L,L) interval where

L := L(k) :=

⎧⎨⎩
π
2 , if A(k) ·B(k) ≥ 0,

arctan
√
−A
B , otherwise

(k ∈ [−1, 1]) .

Note that for all of the equations above, the heuristic A(k), B(k), and C(k) func-
tions may readily be redefined if needed. We have experimented with several sets
of functions. Simplicity, numerical stability, and continuity in terms of k were the
deciding factors. Even though the parametric form has a singularity at k = 0, the
algorithms in this paper are based on the implicit equation, extending to the k = 0
line or plane.

4 Unbounding quadrics

We parameterize quadrics of revolution by rotating s(t) = [s1(t), s2(t)]
T from (3)

around the vertical axis:

P (u, v) :=

⎡⎣cos(v) · s1(u)sin(v) · s1(u)
s2(u)

⎤⎦ = r(u) ·
⎡⎣cos v · cosusin v · cosu

sinu

⎤⎦ (u ∈ [0, L(k)), v ∈ [0, 2π)).

These quadrics can be seen on Figure 3. Similarly, the implicit equation becomes

A · (x2 + y2) +B · z2 + C · z = 0.

Applying the above, we can calculate the intersection of a ray and the quadric
surface. The ray is given by a point p0 = (x0, y0, z0) ∈ R3 and a vector v =
(vx,vy,vz) ∈ R3, ‖v‖ = 1, so we can substitute any p0 + t · v (t > 0) point
on the ray and solve the resulting quadratic equation with the coefficients in the
at2 + bt+ c = 0 equation:

a =A · v2
x +A · v2

y +B · v2
z

b =2A · x0vx + 2A · y0vy + 2B · z0vz + Cvz

c =A · (x2
0 + y20) +B · z20 + C · z0

176 Csaba Bálint and Mátyás Kiglics

Figure 3: Surfaces of the unbounding quadrics for k ∈ [−1, 1] separate the space into
two regions. The region that contains the (0, 0, 1) point must contain the entirety
of the surface once the quadric is transposed and rotated into the scene.[16]

If there are real roots, let them be t1 ≤ t2 and let I := [t1, t2]. If there are
no real roots, let I := [t1, t2] := [−∞,+∞] [14]. However, if 0 �= |k| < 1

2 , then
the solution corresponding to the unwanted branch of the hyperbola needs to be
omitted:

I := [t1, t2] :=

{
[−∞, t2] if (z0 + t1vz) · k < 0
[t1,+∞] if (z0 + t2vz) · k < 0

If none of the conditions apply, I left as defined before. Then, the first intersection
between the ray and the quadric may be computed by evaluating the following four
conditional assignments in order:

t := t2 if t1 = −∞
t := t1 if 0 < t2 < +∞
t :=∞ if t1 < 0
t := 0 if otherwise

(4)

The resulting t ≥ 0 is the intersection location along the p0 + t · v ray.

5 Preprocessing

The accelerator data structure consists of a single grid that stores the distance
values and the quadrics of revolutions in four 32 bit floating-point values. We
multiply the normalized axis direction n ∈ R3 (‖n‖2 = 1) with 2 + k to store the
quadric using 96 bits while the final 32 bits are reserved for the signed distance

Quadric Tracing 177

function values d ∈ R. The quadrics are defined relative to each grid point pc ∈ R3

which becomes the origin in Figure 3. The quadric is scaled and rotated such that
the axis of revolution points towards is n.

During the preprocessing steps, the regular grid is populated with values. The

axis we store is the − ∇f(p)
‖∇f(p)‖ gradient vector because it mostly points towards the

surface and proves to be a good heuristics. The following four steps detail the
computation of the k ∈ [−1, 1] values. These are executed for every cell in parallel
using the GPU:

1. Starting from the origin of the quadric pc, we shoot rays in uniformly sampled
directions vi (i = 1, . . . , N).

2. Each pc + tvi ray is then sphere traced until the surface or the bounding box
is reached.

3. For each ray-surface intersection (xi, yi, zi) := pc + tivi, we compute the
ki ∈ [−1, 1] value that defines the unique quadric of revolution that touches
the surface at that intersection point.

4. To obtain the unbounding quadric within the cell, we need the narrowest
candidate unbounding quadric region from all rays; therefore, k := min{ki |
i ∈ {1, . . . , N}}.

The third step warrants more explanation. Note that we only need to operate
in the plane defined by vi and the n normal vector because the quadric is sym-
metric around n. Let q = (qx, qy) ∈ R2 be the rotated projection into this plane
of the (xi, yi, zi) intersection point where n corresponds to the y-axis in 2D. We
can solve the 2D implicit equation in (1) of the conic for the k parameter after
substituting (2):

k2q2
x + 2

(
|k| − 1

2

)
q2
y − kqy = 0

Depending on the sign of k, the entirety of the conic section lies in the upper
or lower half planes, that is: sgn qy = sgn k. Substituting |k| = k sgn k, and
rearranging yields the quadratic equation

q2
x · k2 + (2 sgn qy · q2

y − qy) · k − q2
y = 0 .

The smaller solution for k is the desired parameter ki of the quadric in the third
step.

6 Quadric tracing

The benefit of quadric tracing is that it takes much larger steps along the ray, as
illustrated in Figure 4. The quadrics are stored in grid cells, so for each evaluation
point along the ray, the closest quadric is queried and intersected as seen in Sec-
tion 4. This often yields a step size that skips several grid cells and still does not
skip ray surface intersections.

178 Csaba Bálint and Mátyás Kiglics

However, sometimes the quadric does not contain the whole cell that it is as-
signed to, so the acceleration is zero or negligible for some positions. In this case,
we take advantage of the stored distance values to advance the iteration by the
larger of the two proposed step size. When the computed distance value dips below
a certain threshold, our quadric tracing iteration stops. The remaining iterations
are then used for the enhanced sphere tracing method [3] that converges quickly
close to the surface.

The C++ and OpenGL implementation was developed using the Dragonfly
framework [2, 1]. The preprocessing step, the sphere tracing methods, and quadric
tracing are implemented on the GPU using compute shaders and appropriate mem-
ory barriers. The CSG trees are stored as structures on the CPU, but the shader
code for the SDF can be readily generated on-the-fly. Thus, upon the change
of parameters or desired algorithms, the implementation generated the SDF and
recompiled its shaders to preprocess and render the new surface.

(a) A sphere tracing step was
taken because it was larger

(b) Quadric tracing step is
now greater then the distance

(c) Quadric step to infinity
terminates the raytracing

Figure 4: Consecutive quadric tracing of two circles in 2D. The preprocessing step
created the pink unbounding regions to accelerate raytracing whenever the quadric
step is larger (b, c). Sometimes, the sphere tracing step is larger because the
quadrics are confined to a grid (a). However, the ray does not intersect the quadric
in the last case, meaning the algorithm halts in the third iteration.

7 Results

Our implementation featured and compared classic sphere tracing, relaxed sphere
tracing [10], enhanced sphere tracing [3], quadric tracing. For the method we call
relaxed sphere tracing from [10], the recommended 1.6 step size increase was used.
The enhanced sphere tracing had to be slowed down to accommodate smooth con-
cave surfaces, so the recommended 0.95 step size reduction was applied as detailed
in [3]. During our experiments, we implemented nine test scenes presented in Fig-
ure 5. These test models were also used in [7] for their measurements.

Measuring errors for sphere tracing algorithms can be problematic because there
are hit rays that intersect the surface, and there are miss rays that do not. In both
cases, most algorithms cannot ever reach the desired value, only converge towards
it. Thus, we have a distance-to-surface error tolerance threshold that changes

Quadric Tracing 179

Model 0 Model 1 Model 2 Model 3

Model 4 Model 5 Model 6 Model 7

Figure 5: Performance measurements were based on these test scenes from [7] for
which we have our own implementation.

along the ray, effectively, a cone trace. This means that the absolute error can be
arbitrarily large and still be acceptable. Also, if the algorithm takes larger steps, it
tends to overstep the error threshold by a larger amount making the error smaller
compared to another method with a smaller step size.

For our measurements, we generated a 16 × 16 × 16 quadric field by shooting
70 × 70 rays for each cell. The preprocessing took around three to four times as
long as producing a single frame.

Data for ground truth were produced by sphere tracing the scene for a thousand
iterations. This causes the error of relaxed, enhanced, and quadric tracing methods
to plateau for high iterations, while the sphere tracing will be exact compared to
itself, clearly seen above iteration 64 on Figure 6a.

We made several error metrics, such as the absolute error of divergent and
convergent rays, the ratio of rays that did not converge, and the number of SDF
evaluations. For the first one, we compared rays that missed or converged to the
surface in the ground truth data but were still converging in the test case. Error
values could not be aggregated across test scenes easily; thus, we provide in-depth
data for the run with 32 iterations on Table 1. Table 1 presents average frame render
times and the measured sum of absolute raytracing errors for each model. Quadric
tracing performed better for more complex scenes, and such a case is presented in
Figure 6. We also plotted the number of rays that did not converge before a given
iteration number on Figure 8a.

Our measurements also confirmed the results of [3]: enhanced sphere tracing
decreases the error at a higher rate than the relaxed or the original method. En-
hanced sphere tracing is most efficient at proximity to the surface, while our quadric
tracing accelerates the raytracing through the vast distances between the objects,

180 Csaba Bálint and Mátyás Kiglics

(a) Error on a logarithmic scale

(b) Render time in milliseconds

Figure 6: Measured error and render time values as a function of the iteration for
Model 7 test scene. Quadric tracing has a slightly higher error for a given iteration
count but yields much higher performance across.

as exemplified by Figure 6. The average render time improvement is similar, as
demonstrated by Figure 7. Quadric tracing becomes much faster than other meth-
ods as the function evaluation time increases because the cost of memory read
operations are unaffected by scene complexity. Signed distance function evalua-
tions are decreased by 20% on average when rendering with quadric tracing, as
seen in Figure 8a.

Quadric Tracing 181

Table 1: Relative error and render time comparison of the novel quadric tracing
compared to the state of the art methods, each taking 32 iterations. The relative
values are divided by the error of the basic sphere tracing, taking the same number
of iterations. The enhanced method is slightly more accurate but takes longer to
execute for complex scenes.

Relative error w.r.t. sphere tracing Render time in ms

relaxed enhanced quadric basic relaxed enhanced quadric

model 0 0.0945 0.0362 0.0488 8 8 8 8

model 1 0.2920 0.1227 0.1227 15 14 10 12

model 2 0.1259 0.0347 0.0327 18 18 14 16

model 3 0.0463 0.0034 0.0034 13 13 10 11

model 4 0.0003 0.0003 0.0003 8 8 8 9

model 5 0.1883 0.0879 0.0982 71 70 59 40

model 6 0.0842 0.0142 0.0152 263 276 230 162

model 7 0.0574 0.0101 0.0137 616 695 626 363

model 8 0.0054 0.0003 0.0003 288 330 293 262

Figure 7: Average relative render time with respect to sphere tracing. Each runtime
is divided by that of sphere tracing and then the results are averaged. The time
overhead of the enhanced sphere tracing at the end of quadric tracing is included.

182 Csaba Bálint and Mátyás Kiglics

(a) Average SDF evaluations per ray

(b) Percentage of rays that did not converge

Figure 8: Number of function evaluations per pixel, and the number of rays that
neither missed or hit the surface yet. About 20% of the expensive signed distance
function evaluations can be avoided with quadric tracing.

Quadric Tracing 183

8 Conclusion

This paper presented a novel algorithm to accelerate the raytracing of implicit
surfaces by fitting special quadratic volumes from grid points to the surface and
raytracing the precomputed proxy geometry instead. Thus, instead of a potentially
expensive function evaluation, quadric tracing mostly reads from memory when
rendering the scene. Even though our method can visualize the surface from the
precomputed data, the acceleration structure is coarse and would seriously limit the
resolution and remove surface features. Hence, we opted to continue sphere tracing
on the exact signed distance values after our quadric tracing iteration. Therefore,
the surface remains unchanged while a significant amount of function evaluations
were avoided.

Implementation of the quadric tracing idea necessitated several difficulties to be
solved. First, the unbounding volumes had to be compactly stored, efficiently com-
puted, queried, and intersected with, for which revolutions of conic sections were
designed with specific coefficient functions. Second, both the parametric and im-
plicit representations were needed in 2D and 3D to write efficient implementations
for these on the GPU. This paper focused more on the rendering part rather than
the quadric generation because raytracing efficiency determines the competitiveness
of quadric tracing. Finally, we implemented all of the presented methods in C++
and OpenGL, utilizing the massive parallelization of the GPU for preprocessing,
sphere tracing, and rendering.

Our results show that quadric tracing can efficiently mitigate the slowdown
caused by large CSG trees. In such cases, the method is up to two times faster
then enhanced sphere tracing [3] whilst being slightly less precise, as shown in
Figure 6. On average, quadric tracing was 40% faster than the current state of the
art method.

However, quadric tracing requires the accelerator data structure to be computed
and populated, taking from a few milliseconds to seconds to complete. Therefore,
every time the scene changes, every quadric in every cell needs to be updated,
which renders quadric tracing impractical for dynamic scenes. Although intuition
suggests otherwise, executing the preprocessing step and the quadric tracing in
every frame can be faster than the enhanced method, as our early experiments
suggested. However, this was not the focus of this paper, so further research is
required with a suitable data structure that can be updated efficiently.

References

[1] Bálint, Csaba and Bán, Róbert. Dragonfly: A C++17 OpenGL framework.
7th Winter School of PhD Students in Informatics and Mathematics, 2020.
http://www.doszmito.hu/wsps7.pdf.

[2] Bálint, Csaba and Bán, Róbert. Dragonfly: A high level low overhead OpenGL
framework. The 11th International Conference on Applied Informatics, 2020.

184 Csaba Bálint and Mátyás Kiglics

[3] Bálint, Csaba and Valasek, Gábor. Accelerating Sphere Tracing. In Diamanti,
Olga and Vaxman, Amir, editors, EG 2018 - Short Papers. The Eurographics
Association, 2018. DOI: 10.2312/egs.20181037.

[4] Bálint, Csaba, Valasek, Gábor, and Gergó, Lajos. Operations on signed dis-
tance functions. Acta Cybernetica, 24(1):17–28, May 2019. DOI: 10.14232/

actacyb.24.1.2019.3.

[5] Bán, Róbert, Bálint, Csaba, and Valasek, Gábor. Area Lights in Signed Dis-
tance Function Scenes. In Cignoni, Paolo and Miguel, Eder, editors, Euro-
graphics 2019 - Short Papers. The Eurographics Association, 2019. DOI:
10.2312/egs.20191021.

[6] Foley, James David. Constructive Solid Geometry. In Computer Graphics:
Principles and Practice, pages 533–558. Addison-Wesley Professional, 1990.

[7] Friedrich, Markus, Roch, Christoph, Feld, Sebastian, Hahn, Carsten, and Fay-
olle, Pierre-Alain. A flexible pipeline for the optimization of CSG trees. Com-
puter Science Research Notes, 3001, 2020. DOI: 10.24132/csrn.2020.3001.

10.

[8] Hart, John. Sphere tracing: A geometric method for the antialiased ray trac-
ing of implicit surfaces. The Visual Computer, 12, 1995. DOI: 10.1007/

s003710050084.

[9] Íñigo Qúılez. Rendering Worlds with Two Triangles with raytracing on the
GPU in 4096 bytes. In NVScene, 2008. https://uploads.gamedev.net/

monthly_2017_07/rwwtt_pdf.dde5c198ccab31d95a41093666ffaad1.

[10] Keinert, Benjamin, Schäfer, Henry, Korndörfer, Johann, Ganse, Urs, and
Stamminger, Marc. Enhanced Sphere Tracing. In Giachetti, Andrea, editor,
Smart Tools and Apps for Graphics - Eurographics Italian Chapter Conference.
The Eurographics Association, 2014. DOI: 10.2312/stag.20141233.

[11] Lechner, Patrik. Room impulse response estimation using signed distance
functions. In DAFx-2020 - Vienna. 23rd International Conference on Digital
Audio Effects, September 2020.

[12] Levy, Silvio. Geometry formulas and facts. In 30th Edition of CRC Standard
Mathematical Tables and Formulas. CRC Press, 1995.

[13] Liu, Shaohui, Zhang, Yinda, Peng, Songyou, Shi, Boxin, Pollefeys, Marc, and
Cui, Zhaopeng. DIST: rendering deep implicit signed distance function with
differentiable sphere tracing. CoRR, abs/1911.13225, 2019. http://arxiv.

org/abs/1911.13225.

[14] Oden, J. Tinsley and Demkowicz, Leszek. Linear algebra. In Applied Func-
tional Analysis (3 ed.). Chapman and Hall/CRC, 2018.

Quadric Tracing 185

[15] Osher, Stanley and Fedkiw, Ronald. Signed distance functions. In Level Set
Methods and Dynamic Implicit Surfaces, pages 17–22. Springer, 2003.

[16] Rodrigues, Olinde. Des lois géometriques qui régissent les déplacements d’un
système solide dans l’espace, et de la variation des coordonnées provenant de
ces déplacement considérées indépendant des causes qui peuvent les produire.
Journal de Mathématiques Pures et Appliquées, 5:380–440, 1840.

[17] Thomas, George B. and Finney, Ross L. Curves in the Plane. In Calculus and
Analytic Geometry (5th ed.). Addison-Wesley, 1979.

[18] Wright, Daniel. Dynamic occlusion with signed distance fields. In Advances
in Real-Time Rendering in Games. Epic Games (Unreal Engine), SIGGRAPH
course, 2015.

