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Using the Fisher Vector Approach

for Cold Identification∗
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Abstract

In this paper, we present a computational paralinguistic method for assess-
ing whether a person has an upper respiratory tract infection (i.e. cold) using
their speech. Having a system that can accurately assess a cold can be help-
ful for predicting its propagation. For this purpose, we utilize Mel-frequency
Cepstral Coefficients (MFCC) as audio-signal representations, extracted from
the utterances, which allowed us to fit a generative Gaussian Mixture Model
(GMM) that serves to produce an encoding based on the Fisher Vector (FV)
approach. Here, we use the URTIC dataset provided by the organizers of the
ComParE Challenge 2017 of the Interspeech Conference. The classification is
done by a linear kernel Support Vector Machines (SVM). Owing to the high
imbalance of classes on the training dataset, we opt for undersampling the
majority class, that is, to reduce the number of samples to those of the mi-
nority class. We find that applying Power Normalization (PN) and Principal
Component Analysis (PCA) on the Fisher Vector features is an effective strat-
egy for the classification performance. We get a better performance than that
of the Bag-of-Audio-Words approach reported in the paper of the challenge.

Keywords: computational paralinguistics, speech processing, machine learn-
ing, fisher vector

1 Introduction

Upper respiratory tract infection (URTI) is an infectious process for any of the
components of the upper airway. E.g., the common cold, a sinus infection, amongst
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others. Being able to automatically assess whether a subject has a cold may be
relevant when trying to prevent the spread of it by predicting its patterns of prop-
agation. The area of computational paralinguistics differs from Automatic Speech
Recognition (ASR), which focuses on the actual content of the speech of an audio
signal. Here, computational paralinguistics may provide the necessary tools for
determining the way the speech is spoken. Various studies have offered promising
results in this area: diagnosing neuro-degenerative diseases using the speech of the
patients [5, 6, 7], the classification of crying sounds and heart beats [10], estimating
the sincerity of apologies [9], determining the depression of a subject [4]. In this
study, we focus on finding specific voice patterns latent in the speech of subjects
having a cold.

Previous studies applied various approaches for classifying cold subjects using
the same corpus. For example, Gosztolya et al. employed Deep Neural Networks
for feature extraction for this purpose [8]. Huckvale and Beke utilized four types
of voice features for studying changes in health [11]. Furthermore, Kaya et al. [14]
introduced the application of a weighting scheme on instances of the corpus, mak-
ing use of a Weighted Kernel Extreme Learning Machine in order to handle the
imbalanced data that comprises the URTIC corpus. As any other computational
paralinguistic task, assessing a cold from the speech is a challenging issue. Finding
out the latent patterns that could characterize or represent a cold speech does not
only depend on the feature extraction phase but in the data itself too. This may
be attributed to different perspectives: limited amount of data, data imbalance,
quality of the recordings.

In this study, we exploit the Upper Respiratory Tract Infection Corpus (URTIC
that was the dataset of one of the Sub-Challenges in the ComParE Challenge from
Interspeech 2017) [21]. In the feature extraction phase, we selected frame-level
features. Namely, we utilize Mel-frequency Cepstral Coefficients (MFCC) as audio-
signal representations, extracted from the utterances. This allowed us to fit a
generative Gaussian Mixture Model (GMM) that can produce an encoding based
on the Fisher Vector (FV) approach. That is, the computation of low-level patch
descriptors together with their deviations from the GMM gives us an encoding (i.e.
feature) called the Fisher Vector.

Unweighted Average Recall (UAR) scoring was used to measure the performance
of the model since it is the de facto standard metric for these kinds of challenges [18].
To the best of our knowledge, this is the first study that focuses on making use of
a FV representation in order to detect a cold.

Furthermore, we find that applying Power Normalization (PN) and Principal
Component Analysis (PCA) on the Fisher Vector features is an effective strategy
for the classification performance. In the next part of our study, we employ a
late-fusion of the ComParE Bag-of-Audio-Words (BoAW) features with the Fisher
Vector representations. Mentioned fusion technique contributes to the classification
performance.
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Table 1: Upper Respiratory Tract Infection Corpus (URTIC).

Class Train Development Test Total

Cold 970 1011 895 2876
Not-Cold 8535 8585 8656 25,776
Total 9505 9596 9551 28,652

2 Data

The entire dataset consists of 382 male speakers, 248 female speakers, with a mean
age of 29.5 years; and a sampling rate of 44.1kHz downsampled to 16kHz. For
the Sub-Challenge, the corpus was provided by the Institute of Safety Technology,
University of Wuppertal, Germany. The following tasks were performed by the
participants: they had to read short stories (e.g. the well-known story in the field
of phonetics The North Wind and the Sun, to produce voice commands (such as
numbers from 1 to 40), and to narrate spontaneous speech (i.e. tell something about
their last weekend or their best vacation). Note that the number of tasks varied
for each speaker. The recordings were split into 28,652 chunks of 3 to 10 seconds
in length. Specifically, the division of the chunks was carried out in a speaker-
independent manner, each partition (i.e. train, development, and test) having 210
speakers. The training and development sets are both comprised by 37 subjects
having a cold and 173 subjects not having a cold. The reader may see more details
in [22]. The number of samples and classes for each dataset is described in Table 1.

3 Methodology

Figure 1 shows the methodology employed in this study: (1) Frame-level fea-
tures (MFCC) were extracted from the utterances; (2) A Gaussian Mixture Model
(GMM) is trained utilizing the MFCC representations; (3) Fisher Vector features
are extracted using the trained GMM; and (4) SVM performs the classification
task.

3.1 Frame-level feature extraction

The features we employed were the well-known MFCCs with a dimension of 13,
along with their first and second order derivatives, frame-length and frame-shift of
25 ms and 10 ms, respectively. We used the Kaldi Speech Recognition Toolkit [17]
for this task.
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3.2 Fisher Vector (FV)

The FV approach is an image representation that pools local image descriptors [19].
It was originally intended for image classification but here we exploit its ability to
generate a complete representation of the samples which are later characterized by
their deviation from a generative GMM. The samples can be thought of as local
patch descriptors of an image. In our case, they are the frame-level features of
an audio signal. FV is an improved version of the general case called the Fisher
Kernel (FK) [12], which measures the similarity of two objects from a parametric
generative model of the data. The FK will be explained more in detail in the next
section. FV basically assigns a local descriptor to elements in a visual dictionary.
This approach stores visual word occurrences and takes into account the difference
between dictionary elements and pooled local features, it stores their statistics as
well.

3.2.1 Fisher Kernel (FK)

It seeks to measure the similarity of two objects from a parametric generative model
of the data (X) which is defined as the gradient of the log-likelihood of X [12]:

GX
λ = �λ log υλ(X), (1)

where X = {xt, t = 1, . . . , T} is a sample of T observations xt ∈ X , υ represents
a probability density function that models the generative process of the elements
in X and λ = [λ1, . . . , λM ] ′ ∈ RM stands for the parameter vector υλ [19]. Thus,
such a gradient describes the way the parameter υλ should be changed in order to
best fit the data X. A way to measure the similarity between two points X and Y
by means of the FK can be expressed as follows [12]:

KFK(X,Y ) = GX′
λ F−1

λ GY
λ . (2)

Eq. (3) shows how the Cholesky decomposition F−1
λ = L′λLλ can be utilized to

rewrite the Eq. (2) in terms of the dot product:

KFK(X,Y ) = G X′
λ G Y

λ , (3)

where
G X
λ = LλG

X
λ = Lλ �λ log υλ(X). (4)

Such a normalized gradient vector is the so-called Fisher Vector of X [19]. Both
the FV G X

λ and the gradient vector GX
λ have the same dimension.

3.2.2 Fisher Vector for audio-signals

Let X = {Xt, t = 1 . . . T} be the set of D-dimensional local SIFT descriptors
extracted from an image and let the assumption of independent samples hold, then
Eq. (4) becomes:

G X
λ =

T∑
t=1

Lλ �λ log υλ(Xt). (5)
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Figure 1: The methodology applied in this study.

The assumption of independence permits the FV to become a sum of normalized
gradients statistics Lλ �λ log υλ(xt) calculated for each SIFT descriptor:

Xt → ϕFK(Xt) = Lλ �λ log υλ(Xt), (6)

which describes an operation that can be thought of as a higher dimensional space
embedding of the local descriptors Xt.

Hence, the FV approach extracts low-level local patch descriptors from the
audio-signals’ spectrogram. Then, with the use of a GMMwith diagonal covariances
we can model the distribution of the extracted features. The log-likelihood gradients
of the features modeled by the parameters of such GMM are encoded through the
FV [19]. This type of encoding stores the mean and covariance deviation vectors
of the components k that form the GMM together with the elements of the local
feature descriptors. The image is represented by the concatenation of all the mean
and the covariance vectors that gives a final vector of length (2D + 1)N , for N
quantization cells and D dimensional descriptors [16, 19].

The FV approach can be compared with the traditional encoding method: BoV,
and with a first order encoding method like Vector of Locally Aggregated Descrip-
tors (VLAD) [1]. In practice, BoV and VLAD are outperformed by FV due to its
second order encoding property of storing additional statistics between codewords
and local feature descriptors [23].

The FV representation, regardless of the number of local features (i.e. SIFT),
or in our case, frame-level features (MFCCs), extracts a fixed-sized feature repre-
sentation from each image (i.e. from each MFCC representation). Here, we use FV
features to encode MFCC features extracted from audio-signals of HC and PD sub-
jects. FV allows us to give a complete representation of the sample set by encoding
the count of occurrences and higher-order statistics associated with its distribution.
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3.3 Classification

Support Vector Machines (SVM) is the classification algorithm used to assess the
recordings, it is typically the standard choice for paralinguistics tasks. Moreover,
this algorithm can achieve good performances when used with FV [19, 24]. As
for the evaluation metric, Unweighted Average Recall (UAR) is the proper way to
measure the performance of these kinds of tasks; principally because it is commonly
used when there is the need to handle class imbalance situations. Furthermore, this
metric has been utilized since the very first ComParE Challenge (see [20] for more
details about the UAR evaluation metric).

4 Experimental Setup

The training dataset consists of 9505 utterances, where 8535 (89.8%) are labeled
as healthy (not-cold) and the rest, 970 (10.2%), are labeled as cold. Likewise,
the development dataset comprises 1011 cold and 8585 not-cold labels, which are
10.53% and 89.47%, respectively. Such a high class imbalance is more likely to
diminish the performance of the SVM classifier. To overcome this, we used random
undersampling which reduces the number of samples associated with all classes to
that of the minority class, i.e. cold. We relied on imbalanced-learn [15], which is a
Python package offering several resampling methods used in datasets that have a
between-class imbalance. In our first experiments we reduced the dimensions of the
features via Principal Component Analysis (PCA) [13], keeping a variance of 0.95.
Chatfield et al. demonstrate that applying PCA before classification enhances the
discrimination task with FV and reduces the memory consumption as well [3].

Moreover, the features (Fisher Vectors) were normalized with Power Normaliza-
tion (PN) and l2-Normalization. Power Normalization was found to be helpful for
FVs representations [19] as it reduced the impact of the features that become more
sparse as the number of Gaussian components increases. In the following experi-
ments, we applied these normalization techniques before reducing the dimensions
using PCA. Likewise, we found that l2-Norm. helped to alleviate the effect of hav-
ing different utterances with distinct amounts of background information projected
into the extracted features, which attempts to improve the prediction performance.

The GMM used in our experiments to compute the FVs was set to operate with
a varying number of components: Gc ranged from 2 to 128. The construction of the
Fisher Vector representations was made with the help of a Python-wrapped version
of the VLFeat library [25]. As stated before, the classification was done using a
Support Vector Machines algorithm. We employed the libSVM implementation [2]
with a linear kernel and, as suggested in [12], the C complexity parameter was set
in the range 10−5, . . ., 101. In order to search for the best complexity value (C)
of the SVM, Stratified Group k-fold Cross Validation (CV) was applied over the
training and development sets. This type of CV allowed us to avoid having the
same speaker in more than one specific fold, while simultaneously preserving the
percentage of samples for each class within each fold.
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Table 2: UAR scores obtained when SVM classified the data using Fisher Vectors.

GMM Performance (%)
Features size Cross-Val Test

ComParE (BoAW-baseline) - 64.54% 67.30%
Fisher Vectors 64 63.98% 66.12%
Fisher Vectors + PCA 64 64.72% 67.65%
Fisher Vectors + PN + PCA 64 64.92% 67.81%
ComParE + Fisher Vectors (+PN+PCA) - 63.01% 70.17%

Finally, we performed late-fusion of the best configurations. Namely, the class-
wise posterior estimates generated by the SVM algorithm could provide a simple
way of classifier combination by taking the mean of two or more posterior vectors.

5 Results

As shown in Table 2, for the baseline we utilized the ComParE functionals (i.e.
Bag-of-Audio-Words features) that were originally presented and described in [21].
According to the results outlined in Table 2, these representations achieved an UAR
score of 67.3% on the test set. This score was slightly outperformed by two of our
configurations: when PCA was applied (67.65%), and when PN was applied along
with PCA (67.81%). Table 1 shows the results obtained when using Fisher Vectors
with their complete number of features as a function of their reduced number of
features. As can be seen, when the classifier learned the raw Fisher Vector features
it achieved a UAR score of 63.98% in the CV. On the test set the performance
was higher (66.12%). PCA proved to be useful here by contributing to a better
classification performance in both CV and test phases (64.72% and 67.65%, respec-
tively). However, we found that applying PN before PCA was effective as the CV
and test UAR scores increased to 64.92% and 67.81%, respectively. Afterwards, we
used the ComParE BoAW [22] feature set posterior probabilities and we combined
them with those of the (power-normalized and reduced) Fisher Vectors, that is, we
carried out a late fusion. The UAR score rose to 70.17% of UAR score on test set,
which outperformed the BoAW baseline.

6 Conclusions

In this study, we presented the Fisher Vector approach as a method of classifying
speech from subjects having a cold. Compared with studies done by other teams
using the same dataset [11, 22], our performance is competitive. Moreover, our fea-
ture extraction approach seems to be simpler than that of the mentioned studies as
we utilized one single type of feature representation for training a model. We found
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that SVM gave better results when the feature pre-processing step was applied
before executing the training phase. Thus, we demonstrated how applying Power
Normalization along with dimension reduction via Principal Component Analysis
on the Fisher Vector features improved the classification performance. Combining
Power Normalization with PCA gave a better UAR score on test set. These results
are higher compared to those got using the Bag-of-Audio-Words approach described
in [22]. We can therefore say that PCA with the SVM allowed us to carry out a
better classification of the actual data while taking care of the memory consump-
tion. PN helped to reduce the impact of the features that increase their sparsity as
the number of Gaussian components increase. Furthermore, L2-normalization was
applied before fitting the data. This helped to alleviate the effect of having differ-
ent utterances with distinct amounts of background information projected into the
extracted features, which attempts to improve the prediction performance. In a
future study, we will try out the FV approach on bigger datasets and evaluate the
performance of a time-delay neural network when it uses them as input features.
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Ondrej, Goel, Nagendra, Hannemann, Mirko, Motĺıček, Petr, Qian, Yanmin,
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