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and András Lőrinczc

Abstract

Cloud-based speech services are powerful practical tools but the privacy
of the speakers raises important legal concerns when exposed to the Internet.
We propose a deep neural network solution that removes personal character-
istics from human speech by converting it to the voice of a Text-to-Speech
(TTS) system before sending the utterance to the cloud. The network learns
to transcode sequences of vocoder parameters, delta and delta-delta features
of human speech to those of the TTS engine. We evaluated several TTS
systems, vocoders and audio alignment techniques. We measured the per-
formance of our method by (i) comparing the result of speech recognition
on the de-identified utterances with the original texts, (ii) computing the
Mel-Cepstral Distortion of the aligned TTS and the transcoded sequences,
and (iii) questioning human participants in A-not-B, 2AFC and 6AFC (Al-
ternative Forced-Choice) tasks. Our approach achieves the level required by
diverse applications.
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1 Introduction

Cloud-based speech services have improved recently due to the large amount of voice
data that is exploited by deep learning technology [1, 3], giving rise to superhuman
performance in several tasks. Consequently, it seems reasonable to use such utilities
in practice.

Unfortunately, many speech applications involve legal concerns regarding pri-
vacy. Several methods have been proposed to eliminate personal information from
samples without spoiling the linguistic content before uploading. We should also
mention, that in many cases the private information is carried by the linguistic
content and not by the voice of the speaker. For example, when a doctor dictates
medical records, the private content is the medical content and not the identity
of the doctor. But in the case of diagnostic sessions with autistic people, it is
the speaker whose identity should remain hidden. If an external ASR is used on
the transformed speech of a patient, the identity will remain concealed, and the
linguistic content can be generated safely.

Voice conversion (VC) operates by altering certain features of human speech
[31]. Voice transformation (VT) converts the signal as if it was uttered by a target
speaker [23]. De-identification is the process that intends to remove any personal
information from the data that could be associated with identity. VC and VT may
be applied to solve de-identification, but the papers in the literature suffer from
several flaws: the VC algorithm in [22] is approximately invertible and relies on a
good voice transformer, while VT [23, 29] requires data from pairs of speakers and
is unable to anonymize the target speaker.

Our contributions are as follows. For de-identification, we propose to transform
utterances to a generic voice of a Text-to-Speech (TTS) engine, by taking advan-
tage of utterance-text sample pairs. We use an end-to-end trainable Deep Neural
Network (DNN) to learn the many-to-one VT task. We suggest to learn the map-
ping at vocoder level. We show that the trained network gives rise to tolerable
distortions at utterance level by conducting two experiments: comparing the out-
puts of Google’s Automatic Speech Recognition (ASR) system for the original TTS
output and the de-identified utterance and measuring the Mel-Cepstral Distortion
(MCD) [19]. To confirm de-identification success, we further performed three kind
of perceptual listening studies with human subjects (A-not-B test: distinguishing
transformed utterances of different speakers, 2-Alternative Forced-Choice (2AFC)
test: classifying utterances from female/male speakers, and 6-Alternative Forced-
Choice (6AFC) test: estimating the number of speakers). Our proposal is irre-
versible and it requires only speech-transcript sample pairs for training, which are
readily accessible in the literature. We argue that our method performs favorably
compared to several baseline methods.
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Figure 1: Schematic diagram of our proposed method. Training [T]: vocoded human
voice is input to a Deep Neural Network (DNN) that is trained to approximate the
aligned TTS output. Inference [I]: vocoded human voice is de-identified by the
DNN and transformed back to utterances by the vocoder.

2 Related work

De-identification can be solved by either VC or VT methods. A subset of the
literature focuses on classical algorithms instead of leveraging the potential of DNN
architectures, and hence fail to produce state-of-the-art speech quality. The so-
called transterpolation VC technique gave rise to significant improvements over
diverse VC methods as reviewed in [16]. Another VC approach exploits the two-step
procedure of an ASR system followed by a TTS [17]. However, due to the method
of the conversion, the latter cannot take advantage of the superior performance of
cloud-based ASR systems. A potential problem of VT methods is that the target
speaker is not generic and hence it cannot be anonymized. Generic is meant here
as monotonic and “robotic”, which does not contain any prosody. Neural TTS
systems nowadays are realistic enough, that it may include unintended prosody,
which makes the transformation harder. The problem can be resolved by converting
to an average voice, however, we decided to go with a TTS system instead of
generating an average voice. In addition, VT methods need speech corpora of
the original speaker and the target speaker, too. To avoid the need for a parallel
corpora an approach that used a pool of pre-trained transformations between a
set of speakers was put forth in [22]. A transformation function was applied to
the source and the target speakers based on speaker similarity and dissimilarity,
respectively. By applying several sound distortion algorithms de-identification was
achieved and the transformation could be reversed, offering several advantages at
the cost of vulnerability.

In contrast, several recent works propose DNNs for many-to-one VC and VT.
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For an overview, see [24]. A VC method using Mel-Cepstral inputs for deep autoen-
coders was introduced in [23]. Speaker-dependent Conditional Restricted Boltz-
mann Machine (CRBM) was applied using Mel-Frequency Cepstral Coefficients
(MFCCs) and deltas for solving the VC task for each speaker pair in [29]. An
autoencoder-based VT approach was proposed to reduce the required size of the
data sets and to shorten conversion time in [32]. A VT method that generates
a one-to-one speaker-dependent DNN using the weights of a speaker-independent
DNN was suggested in [21]. Spectral envelope, fundamental frequency (F0), inten-
sity trajectory and phone duration were converted in [30] subject to an �1 norm
constraint during pre-training. Nevertheless, all of these methods restrict them-
selves to the case of VC and VT, without using transcript data. In this paper, we
directly tackle de-identification and propose to use textual data as well besides the
original speech for training, which are largely available online.

3 Proposed method

We describe the features set, the pre-processing steps and the DNN architectures
in detail here. The de-identification pipeline can be seen in Fig. 1. To differentiate
processes, training and inference are marked with “T” and “I”, respectively.

3.1 Measures

In speech recognition, the standard measure is the word error rate (WER), defined
as the edit distance between the true word sequence and the most probable word
sequence emitted by the transcriber. However, it is not ideal for short sequences.
In cases of 1-word sequences, where the transcriber recognizes the expected word,
but mistakes 1-2 letters, the measure is 0. This is not representative enough, that
is why the Levenshtein distance is used instead.

Levenshtein distance is a measure of the similarity between two strings, which
we will refer to as the S source string and the T target string. The distance between
two words is the minimum number of single-character edits (insertions, deletions or
substitutions) required to transform S into T . This measure is also called character
error rate (CER) or letter error rate (LER). Letter accuracy rate (LAR) will be
used in this document later on:

LAR(S, T ) = 1− LER(S, T ) (1)

3.2 Feature extraction

In order to find the best feature set, we compared multiple vocoder systems in terms
of speech synthesis quality (Ahocoder [7], MagPhase [8], PulseModel [6], WORLD
[28] and STRAIGHT [18]) using the TIMIT [35] test set. We took each sample
and extracted the vocoder parameters from them. We also experimented with
converting the spectral parameters into a mel-cepstral representation. Following
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this, we re-synthesized the samples, and measured the mean Letter Accuracy Rate
(LAR) values between the predicted transcript of Google Cloud Speech-to-Text
system and the transcripts provided with the TIMIT corpus.

During our experiments, we observed that using mel-cepstral representation
during encoding produced more favorable results.

The LAR of the test set was 97%. By applying vocoder systems the LAR was
barely affected, in every case, the relative degradation was less than 2%. In subse-
quent sections, we used the python wrapper of WORLD vocoder called PyWorld,
because of its low computational requirements, continuous support and easy usabil-
ity. The extracted features are the estimation of the fundamental frequency (F0),
spectral envelope and aperiodicity.

F0 is the fundamental frequency of the vibration of our vocal folds. We perceive
it as pitch. The F0 contour is estimated with DIO [27]. To improve the noise
robustness of DIO, we also applied StoneMask pitch refinement algorithm.

Let us introduce xn the subsampled audio signal, and Xk the frequency spec-
trum [15], which is the discrete Fourier transform (DFT) of a signal defined for
k = 0, 1, ..., N − 1.

We can compute the magnitude spectrum Mk, the phase spectrum Φk and the
power spectrum Pk using the following equations:

Mk = |Xk| (2)

Φk = arctan

∣∣∣∣Re(Xk)

Im(Xk)

∣∣∣∣ (3)

Pk = Re(Xk)
2 + Im(Xk)

2. (4)

To convert the values of k into actual frequencies we can use the following formula:

f =
k · fs
N

, (5)

where fs is the sampling frequency and N is the number of samples.
The spectral envelope [15] is the contour of the magnitude spectrum, which is es-

timated with CheapTrick [25]. The shape of this curve approximates the frequency
response of the vocal tract.

The aperiodicity is defined as the power ratio between the speech signal and
the aperiodic component of the signal. It is extracted by D4C algorithm [26].

The cepstrum is the inverse discrete Fourier transform (IDFT) of the logarithm
of the audio signal’s Pk power spectrum:

Cn = IDFT (log(Pk)), (6)

where k = 0, 1, ..., N−1. It gives us a more compact, low dimensional, decorrelated
representation.

With mel-cepstral analysis [10, 33] we can warp the frequency scale and com-
press the frequency coefficients. With the following formula we can calculate the
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M -th order mel-cepstral coefficients:

log
(
X(e−iω)

)
=

M∑
m=0

c̃me−iω̃, (7)

where X
(
e−iω

)
is the discrete Fourier transform of xn, and c̃m is the m-th order

mel-cepstral coefficients.

ω̃ = tan−1

(
1− α2

)
sinω

(1 + α2) cosω − 2α
. (8)

is the phase response of an all-pass filter. It gives us the warped frequency scale.
The α ∈ [−1, 1] is the all-pass constant, which gives the warping characteristic.
With the right α value, which is chosen to be 0.58 based on Merlin [34] suggestion,
the mel-scale becomes a good approximation to the human auditory frequency scale.

The following features are used as inputs and targets to several CNN and
ConvLSTM architectures: Mel-Cepstral Coefficients (MCEP) and band aperiod-
icity (BAP) were calculated using Eq. (7) from the spectral envelope and aperiod-
icity, respectively. Linear interpolation of logF0 was calculated from F0. We also
applied a thresholded binary voiced/unvoiced (V/UV) mask. Dynamic features
(delta and delta-delta) were determined using MCEP and BAP.

3.3 Data sets

We employed the following benchmark corpora in our voice conversion evaluations.
TIMIT [35] is used frequently for comparing different machine learning methods.

This database is attractive for verification and parameter tuning of the algorithms
since it is relatively small, but still has phonetically diverse samples. The training
set has 462 speakers, 8 utterances/speaker. The validation set consists of 50 speak-
ers, totally 400 utterances, and the test set contains 192 sentences from 24 speakers.
Each utterance is approximately 3.5 seconds long on average. The speakers also
represent 8 major dialect regions of the United States.

NTIMIT [9] is a multi-speaker speech database with phone bandwidth that is
derived from TIMIT by adding noise to the samples.

3.4 Pre-processing

The target TTS voices are generated with the Festival Speech Synthesis System
[4] using the transcripts of the datasets. The choice of Festival was motivated by
comparing several TTS systems and supported generic voices. The TTS generated
sound files were aligned to match with the corresponding sound files produced by
the speaker. We used Dynamic Time Warping (DTW) for the alignments.

In case of the TIMIT [35] and NTIMIT [9] data sets, audio normalization was
unnecessary. The train-dev-test speakers are carefully separated. We also aug-
mented data by applying speed warping factors to enlarge the TIMIT dataset.
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Vocoder features were extracted from both the original speakers’ and the TTS
voice. The interpolated logF0, the V/UV mask vector and delta and delta-delta
features are calculated. Multiple combinations of these features are tested as inputs
for different network architectures. Z-score normalization was applied to all of the
calculated features, resulting in zero mean and unit variance.

3.5 Modeling feature transformation

For feature transformation, various deep learning architectures were applied and
compared: (1) we experimented with an architecture, which we refer to as Dense,
having four 1,024 unit dense layers. (2) we used a Convolutional Neural Network
(ConvNet) with two 1D convolutional layers of 512 units and kernel width 7 and
stride 1, and two 1,024 unit dense layers. (3) tried a model, which we call C-BLSTM,
having three batch normalized 256 unit 1D convolutional layers with kernel width 3,
one 128 unit BLSTM layer and two 512 unit dense layers was also tested, where the
first dense layer was batch normalized. Finally, two state-of-the-art architectures
based on (4) Residual Networks (ResNet) [11] and (5) Wav2Letter [20] were also
evaluated.

Within all networks, we used ReLU activation functions and dropout layers with
probability between 0.2 and 0.3, in addition to adding a final dense output layer
on top with linear activation.

4 Results

Here, we present our results. We note that before training on larger data sets, a
sanity check was carried out by varying the size of TIMIT using the Dense, the
ConvNet and the C-BLSTM architectures, confirming that augmentation improves
the results.

4.1 Experimental setup

Festival 2.5 with “voice cmu us rms cg” was used to generate the target TTS utter-
ances in the experiments. We applied PyWorld [13] and SPTK 3.9 [14] for feature
extraction. We implemented the neural networks in Python using the Keras [5]
deep learning framework backed by Tensorflow [2]. We used early stopping with
patience 10 and Adam optimizer with its default parameters. The loss function is
Mean Squared Error (MSE), however, if interpolated logF0 with V/UV mask is
used as input, it is not used in loss calculation. We trained the models on TIMIT
[35] dataset.

Regardless of the model, the network took the whole sequence as input, and its
target was the DTW transformed TTS utterances.

Our implementation is available on GitHub1.

1https://github.com/lkopi/deidentification
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4.2 Objective evaluation

To show that the trained network producing quality outputs at utterance level, we
conducted two quantitative experiments.

The first experiment concerned ASR accuracy. We uploaded the de-identified
network outputs to Google Cloud Speech-to-Text system and quantified the differ-
ence between the true and the predicted transcript.

Precision values are given in Table 1. First, we measured the TTS voices (with-
out applying DTW). It reached 97% ASR accuracy. The DTW aligned TTS reached
93%. ASR accuracy, i.e., a 4% drop was found. The tested DNNs performed well
on the TIMIT data set, producing well understandable speech after synthesization.
Intriguingly, they mostly achieved 80-85% ASR accuracy, only, a relatively large
drop compared to the 93% goal.

Cloud-based ASR services improve constantly. One can expect that the perfor-
mance will increase over time. We found that the ResNet and Dense architectures
marginally outperformed the others.

In the second experiment, we evaluated Mel-Cepstral Distortion (MCD) [19]
between de-identified Dense network outputs and the aligned TTS signals. MCD
is given by the following equation:

MCD[dB] =
1

N

N∑
n=1

10

log 10

√√√√2

D∑
d=1

(cn,d − ĉn,d)2, (9)

where N is the number of frames in the analysis, D is the number of coefficients,
cn,d and ĉn,d are the dth coefficient of the nth frame of the target and the predicted
MCEP vector, respectively.

The final MCD values were obtained by averaging over all 1,680 test sample
pairs of the TIMIT corpora using the Dense architecture. The mean and standard
deviation values are presented in Fig. 2 for our method (last column) together with
values available in the literature. Our method seemingly outperformed its baselines,
however other methods listed in the figure were trained on different datasets, so

Table 1: Details of the objective evaluations on the TIMIT database. The average
and the standard deviation of the Letter Accuracy Rate (LAR) measured with
Google Cloud Speech-to-Text system is presented for the proposed architectures
and input features. Notation: “ilF0” means interpolated logF0.

Method Architecture
ASR (LAR) precision using the following features:

logF0 + MCEP +
BAP

ilF0 + MCEP +
BAP

ilF0 + MCEP +
BAP + deltas

Dense 5 dense 0.77 ±0.17 0.85 ±0.15 0.84 ±0.16
ConvNet 2 conv + 3 dense 0.76 ±0.17 0.82 ±0.17 0.82 ±0.15
C-BLSTM 3 conv + blstm + 3 dense 0.77 ±0.14 0.79 ±0.15 0.79 ±0.15
ResNet 4 residual + 3 dense 0.79 ±0.15 0.82 ±0.16 0.82 ±0.14
Wav2Letter 9 conv + 2 dense 0.76 ±0.16 0.79 ±0.17 0.77 ±0.16
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Figure 2: Mean Mel-Cepstral Distortion (MCD) values of various schemes:
Exemplar-based Nonnegative Matrix Factorizations (ENMF) [12] using 3000 ran-
domly selected source-target pair frames, VAE-pair [12], Bernoulli-Bernoulli RBM
(BB-RBM) [29], Gaussian-Bernoulli RBM (GB-RBM) [29] and our proposed
method.

a direct comparison is not possible. ENMF-3000 and VAE-pair were evaluated on
the VCC2016 Speech Corpus, and the BB-RBM and GB-RBM were ran on ATR
Japanese speech database. The figure only allows to give an impression about the
performance of our method.

4.3 Subjective evaluation

To confirm that our Dense network can properly de-identify human speech, we
conducted four qualitative experiments with human participants in an isolated en-
vironment. The synthesized outputs are intelligible and successfully de-identified.
The collection of the subjective tests is available online2.

In all four tests, the results were convincing, subjects performed like random
choice, see Table 2. Participants were unable to sense any of the relevant aspects
of the speakers. In both 6AFC tests, the task was to guess the number of speakers
(between 1 and 6). In the first 6AFC test, none of the subjects inferred accurately.
In the second 6AFC test, 4 subjects out of 22 predicted correctly, which matches
random guessing within tolerance.

5 Summary

We presented a deep neural network based speech de-identification method that
can map vocoder features of human speech to those of a generic TTS engine with
little or minimal loss of sound quality using the TIMIT data set. The novelty of
our scheme is that de-identification is based on speech-text sample pairs, which
are widely available in the speech processing community. In the resulting signal,

2https://people.inf.elte.hu/foauaai/deidentification
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Table 2: Results of the perceptual listening experiments. We report the average
and the standard deviation of the identification accuracy.

Task
# of
subj.

# of
samp.

Accuracy
mean ±std

Random
choice

A-not-B

22

20 0.56 ±0.15 0.5
Female/Male (2AFC) 15 0.51 ±0.15 0.5

# of Speakers 6 0 0.16
(6AFC) 6 0.18 0.16

the identity of the speaker is concealed, as confirmed by our perceptual listening
experiments.

A limitation of our technique is that the dynamics of the original speaker are
inherited due to the application of DTW. We hypothesize that this problem may
be alleviated by applying DTW in the loss function of the deep network. We leave
such studies to future work.

Our technique enables privacy-aware speech recognition for adults. The pro-
posed method is lightweight and can be used for collecting de-identified databases
when the privacy of the user is important, for example in cloud-based speech
services or in medical records. The fact that our method requires only speech-
transcript sample pairs is a very promising aspect for deep learning, which requires
large and high quality databases.
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