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Abstract

Since the advent of smartphones, IoT and cloud computing, we have seen
an industry-wide demand to integrate different healthcare applications with
each other and with the cloud, connecting multiple institutions or even coun-
tries. But despite these trends, the domain of access control and security of
sensitive healthcare data still raises a serious challenge for multiple developers
and lacks the necessary definitions to create a general security framework that
addresses these issues. Taking into account newer, more special cases, such
as the popular heterogeneous infrastructures with a combination of public
and private clouds, fog computing, Internet of Things, the area has become
evermore complicated. In this paper we will introduce a categorization of the
required policies, describe an infrastructure as a possible solution to these
security challenges, and then evaluate it with a set of policies based on real-
world requirements.
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1 Introduction

In the mid-2010s with the emergence of the Fast Healthcare Interoperability Re-
sources (FHIR) standard from HL7 [1], it seemed that we finally had the necessary
tools to create e-health applications and databases that not only meet their re-
spective institutional requirements, but also conform to international standards,
making a networked health infrastructure more feasible. FHIR achieved this by
defining a set of over 90 document templates that can be implemented in both
JSON and XML formats and used to describe the entire healthcare workflow from
administration to the daily events that a general practitioner or nurse is confronted
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with. FHIR has also made these documents customizable to meet specific require-
ments and cover specific areas. These attractive aspects have made FHIR the most
popular and widely used healthcare communications standard from HL7 to date.

However, the FHIR standard had some alarming shortcomings [7, 10]. Although
some of these have been addressed in the course of the various updates to the
standard, one of the most pressing is still an open problem - namely the lack of
clearly defined access control and security. While FHIR generally accepts custom
extensions and adaptations of its standardized document types, it provides only
a light template and some minor guidelines for security policy enforcement. This
has led to a ”free-for-all” problem in the development of e-Health applications,
with almost everyone developing their own solutions, which greatly corrupts the
original concept of interoperability. With the introduction of the GDPR [12], the
increasing integration of IoT and intelligent devices into the healthcare workflow
[18] and in some cases the decision to use a heterogeneous backend [32] for handling
accessibility and sensitive data, the complexity of this issue has increased. Another
complicating factor is that the most popular current technologies for the backend
are serverless and native cloud infrastructures. These present two main problems:
with the advent of fog/edge computing, data processing takes place much closer to
the end devices and user locations, and in these cases a large amount of sensitive
data is stored in a public cloud.

The two main approaches recommended by the official documentation of the
FHIR standard for these challenges are the attribute- or role-based policy controls,
ABAC [36] and RBAC [15], respectively. With RBAC, the developer is able to
assign specific roles to users that determine the level of access and possible oper-
ations in the system. Some typical roles in a medical system would be those of a
doctor, nurse, patient, family member, and so on. In contrast, ABAC uses specific
attributes of the user or the requested data to determine whether access should be
granted.

However, in the current network topology, which combines IoT, intelligent de-
vices, edge computing, private and public clouds, these methods in themselves are
far from sufficient. To meet these needs, it is essential to develop a hybrid ap-
proach that combines the strengths of these two classical methods. Furthermore, it
is important that these enforcement points can be placed at any part of the infras-
tructure to deal with the sensitive nature and processing requirements of the data.
For example, while fog endpoints require a complete FHIR object, the connecting
IoT devices may not be able to handle such complex data structures. In the case
of a hybrid cloud solution, the data could also pass through a public cloud between
the private cloud and end users, where naturally stricter policies and encryption
are required than for the isolated, private parts of the infrastructure, as shown in
Figure 2.

A popular concept for such enforcement points is the concept of Policy En-
forcement Point (PEP), developed by the standards organization OASIS as part of
its eXtensible Access Control Markup Language standard [14], an extension of the
classic ABAC model, also known as policy-based access control or PBAC. While
we are committed to developing a custom, fine-grained security solution that is
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Figure 1: The Policy Enforcement Flow between end users and the cloud

not subject to the strict limitations of the XACML standard, the concept of the
PEP-based architecture is well suited to our needs. In the complete model shown
in Figure 1, the responsibilities for access control and security enforcement are dis-
tributed across several components. The Policy Enforcement Point (PEP) is the
key to the model that enforces policies and allows or denies access to resources.
Administrators can define given policies at the Policy Administration Point (PAP),
which are evaluated and stored by the Policy Decision Point, based on the user’s
identity or multiple identities, and recognized by the Policy Identification Point
(PIP). The PDP’s decision is handled and enforced by a PEP. This model also
provides some room for customization, because the exact structure of these nodes
can be defined by the developers, and the nodes have the ability to fuse multiple
elements of the infrastructure into one.

The main requirements of such a PEP solution in our infrastructure are the
following:

• Transparency: It should have as little impact as possible on the performance
and latency of the system;

• Efficiency: Since several elements of the infrastructure do not have the mem-
ory and CPU capacity to perform complex transformations and an analysis of
the data, the enforcement engine should spare them from the more demanding
operations;

• Portability: It should be possible to place it at any point on the infrastruc-
ture. The main strength of edge computing is its ability to provide function-
ality even when the cloud is not available. This also means that it should
be able to work between the edge and the cloud, between the edge and end-
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Figure 2: A hybrid edge computing infrastructure with a public and a private cloud

points, in the cloud or in some scenarios even on endpoints if they have the
necessary resources;

• Adaptability: The domain of telemedicine requires strict, very specific
guidelines to protect sensitive data. The reason why ABAC and RBAC by
themselves are not enough is that the requirements for interoperability and
interchangeability demand a much more dynamic and fine-grained approach.
The PEP should support the formulation and assessment of even the most
specific needs.

Our work seeks to combine these two approaches while separating the access
control process from the backend and frontend and putting it on the path of the
data between the cloud and the end users. In our previous study [33] we introduced
the concept of a hybrid access control methodology, taking the classical roles of the
telemedicine environment and assessing its requirements based on the content of
the documents and the contextual information. Later, we described a theoretical
infrastructure [34] which, based on our assumptions, should allow us to effectively
implement this methodology in a clinical environment. In the latter case, we not
only defined the four main categories of required policies, but also selected a poten-
tial candidate as our policy enforcement point and performed various tests on FHIR
documents while monitoring CPU load and memory usage. These early evaluations
demonstrated that our concept is viable.

Since then, we have been able to develop a prototype of this infrastructure,
which integrates the chosen PEP between a small client application and a scalable
NoSQL database with over 500,000 FHIR documents.

In this paper we investigate the performance and relative latency of a PEP
engine as part of the larger infrastructure. To this end, in the Related Work section
we give an overview of several possible solutions and research projects that, with at
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least some degree of similarity to our study, also sought to combine access control
methods and define complex, interoperable security frameworks for health care. In
the next section we describe our results obtained so far in greater detail and present
the test environment and the various policies for the evaluation process. Then, in
the Results section we share and analyze the results of our tests to determine
trends in the evaluation process and possible patterns, anti-patterns for our future
work. Finally, in the Conclusions section we summarize these results and provide
an outlook on future steps and possible new directions for research.

2 Related Work

While the authors of a 2013 comparative study based on 775 reviewed articles
found that RBAC [13] was the most popular approach to manage access control in
healthcare, this trend changed significantly with FHIR, and the preference between
ABAC and RBAC became the de facto choice of the development team rather than
industry standards.

For example, the developers of the application atHealth [31] succeeded in imple-
menting a role-based methodology for their mobile application in 2017, recognising
the lack of security in FHIR. However, there also were implementations of the
ABAC model for access control to health records [21] in the same year.

To further complicate the issue of these two models, as early as 2008 [23] there
were critics who noted that access control in healthcare systems is sufficiently com-
plex to justify situation-based decisions, with the classical concept of roles and
attributes oversimplifying the issue. When we conducted our first experiments in
2018 in this area [33], we also found that neither ABAC nor RBAC as such is
sufficient to meet the needs of practitioners and clinical applications, because even
though roles are important elements of security, they cannot cover every situation
without specific, contextual information.

Although there are platforms, such as the popular SMART project [11], which
offer a solution in the form of a full OAuth2 integration into their FHIR database,
the use of such frameworks usually comes at the expense of a certain degree of
freedom in the choice of health infrastructure components. There have been several
attempts to define hybrid solutions both in healthcare [24] and more generally in
multi-modal, heterogeneous environments [9]. A key concept of the domain is the
requirement to control access not only to entire documents, but also to specific
fields and attributes in documents. The proposed architecture by Rezaeibagha, F.
et al [28] is specifically designed to move sensitive data from a secure private cloud
to a public one, while maintaining security.

In 2016, Pusselwalage H. S. G. et al. [25] published their approach for an ABAC
methodology that bases its policies not only on the attributes of the data but also on
the attributes of the user, treating the different levels of access and the classical roles
in healthcare as attributes. They combined the two models to some extent, while
also highlighting special cases such as unregistered users or registered users without
a specific role. In 2018 Joshi M. et al. [20] used a similar approach with roles treated
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as attributes, but instead of granting full access, their solution also transformed
the requested data to match the requester’s access level. The developers of the
SOCIAL platform [29] also discussed some interesting ideas about treating the
requesting device as an important component of ABAC with a combination of the
user attributes.

During our review we also found some studies that appeared to combine ele-
ments of the RBAC and ABAC models without clearly categorizing their method-
ology as a hybrid. The developers of the [26] H-Plane Framework, which follows
the terminology of the ABAC model, also apply several attributes in a way that is
almost identical to some aspects of RBAC. In their publication they also pointed
out the importance of the IoT in this domain. In 2019, Alnefaie, S. et al. [6] af-
ter reviewing the possible alternatives for access control they thought ABAC was
much better suited to the needs of healthcare in combination with edge computing,
but also suggested modifying the infrastructure of the methodology to bring the
point of evaluation closer to the edge and place more emphasis on the identity of
the IoT device itself. Tasali Q. et al. [35] extended this concept by covering not
only medical data, but also the authorization process for real-time communication
between IoT devices.

The solution proposed by the developers of the mHealth application [22] is also
quite similar to ours, the main differences being that its policy engine is deployed
as part of the cloud services and the engine is an implementation of the NIST
NGAC framework, with the evaluation process based on traversing a Neo4j graph
database. The infrastructure and principle designed by Ray, I et al. [27] also have
similar features, with policy enforcement based on the XACML format.

To summarize the state-of-the-art based on these sources:

• A modern solution should either extend the traditional access control ABAC
model or develop a custom hybrid solution to meet the needs of the domain;

• Heterogeneous storage should be taken into account and the sensitive docu-
ments must be transformed before they enter the public cloud;

• The IoT raises brand new challenges. The security solution must be able to
handle the different capabilities and requirements of these tools when evalu-
ating and converting the healthcare data.

It is clear that our approach is only one of many proposals that seek to resolve
the security issue of EHR. Our goal is to combine the best ideas and elements of
the domain - combining RBAC and ABAC, establishing the included PEP nodes
as a middle layers between the private and public clouds, public cloud and edge
network, etc. - and also to improve and extend them, to provide support for every
database and application that uses FHIR, and to provide users and developers with
a trusted, verified solution to the security problem.
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3 Our Approach

3.1 Telemedicine Security Infrastructure

The goal of our research is to create a solution that is able to support several
different storage providers and at the same time make the infrastructure shown in
Figure 3 transparent to the end users. While the use of such heterogeneous backends
is recommended in various use cases, the field of telemedicine is the prime example
of how the strengths of this model can be brought to bear. Even before the GDPR,
the storage and encryption of data was a major challenge, and while public cloud
providers proved to be very popular with telemedicine developers, the storage in
such solutions required high-level encryption and data transformation. However,
with heterogeneous storage, it is possible to store the sensitive data in a private,
more secure cloud and the less sensitive information in a public cloud or even in a
custom database to improve and optimize the efficiency of the system as a whole.
To achieve this, we needed to place our entire policy enforcement flow - the Policy
Enforcement Point, Policy Decision Point, and Policy Identity Point - between the
back-end and front-end and connect it to a proxy. We chose a Squid proxy [30]
implementation to achieve the latter and configured it to forward each request,
but upon receipt of a response containing FHIR structures, send it to the PEP for
filtering and (if necessary) transforming before forwarding it to the end user. This
provides a necessary middlelayer, unlike most solutions we discussed in the previous
section. In this way, policy enforcement can take place outside the cloud, which
allows the use of a heterogeneous storage solution (provided that it uses the FHIR
standard as the format of the stored documents), but it also relieves the burden on
the end systems. This approach is not only better optimized in terms of efficiency
and capacity, as some of the end systems may not have the required capabilities, but
it also ensures that sensitive information never reaches the end users without prior
assessment and filtering. It should be added that with such a proxy, developers are
also able to log in detail the various operations on the telemedicine records in order
to comply with the GDPR.

Figure 3: A general outline of our proposed solution
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To test our concept of policy enforcement, we chose a promising new solution
called Open Policy Agent [4], available in Go and WebAssembly, which could play
every role in the enforcement process. There is also an OPA implementation in
WebAssembly - this way, if it turns out to be an effective PDP/PEP solution, it
could be placed on any part of the infrastructure (or even in multiple locations
simultaneously) to meet another one of our requirements. OPA also permits us to
store the information necessary for decision making in JSON format and define the
various policies in its own scripting language, Rego, which can later be accessed
via a well-defined REST interface with an HTTP POST request containing the
contextual information to be filtered or evaluated (in our case, the medical records).

3.2 Test Environment

At this stage of our research, we decided to use the cleanest possible test environ-
ment. To achieve this, we created the prototype infrastructure on a local network
connected via WiFi (at 5 GHz frequency with only the elements of the prototype in-
frastructure connecting) to the various nodes hosting different actors of our model,
instead of testing with a well-known cloud provider like Google Firebase. This
means having:

• A desktop PC running Windows 10 on an AMD Ryzen 5 processor at 3.59
GHz speed and 16 GB DDR4 memory ran the client application on a Kingston
SSDNow V300 SSD with 120 GB capacity and 450 MB/s reading speed, acting
as the controller node of the environment;

• A laptop running Windows 10 on an Intel i5 processor at 2.49 GHz speed with
8 GB DDR4 and a 120 GB SSD with a reading speed of 423 MB/s memory
hosted the MongoDB v3.2.1 [2]-based backend along with a lightweight REST
API that handled the requests and query parameters;

• A secondary laptop with similar attributes hosted the Squid proxy written in
NodeJS 10.14;

• An iMac running macOS Catalina with an Intel i5 processor at 2.9 GHz speed
and 20 GB DDR3 memory hosted the OPA v0.23.2 runtime with a hard disk
of size 1 TB and reading speed of 210 MB/s.

The database was loaded with over 500,000 different FHIR Observation docu-
ments, based on properties from the MIMIC3 database [19], involving 200 patients,
30 doctors and 12 nursing teams, all signed with a different time stamp between
2015 and 2020. The template and structure of these Observations were taken from
one of our industry projects to simulate the size and complexity of healthcare doc-
uments in a real system. The measurements were performed by a monitoring host
that issued the restarts and reinitializations of each element of the architecture
between measurements. During the experiment, each component was configured so
that its output was logged in separate files that were collected and evaluated by
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the monitor at the end of a round. Each rule ran on 8 different input sizes: 10,
20, 50, 100, 200, 500, 1000 and 2000 data sets. The PEP engine received exactly
the same amount of data in each round, but of course the size of the output varied
from case to case, depending on the selected policy and the content of the input.

3.3 Evaluation Role Set

In our previous paper [34], we defined the four main categories of policies required by
the domain to evaluate health data before it reaches the external network and end-
user applications. We based this categorization on several sources and overviews
of the domain [8] [17] [16] [5], from which we were able to determine the basic and
extended safety requirements of the health sector. In accordance with the GDPR,
every user of the system must naturally have full control over their data. The
patient is the primary owner, the physician who wrote the document or assisted
in its creation is the secondary, while other practitioners and relatives can have
access to it to some extent. The system must also handle indirect access when the
applicant, as a member of a group, tries to access the file. These respective types
of access must be identified based on a combination of user roles, role groups and
the attributes of the FHIR documents.

In some cases, contextual information is also required to determine the degree of
access. For example, while a general practitioner should be able to access patient
records at any time (logging the exact time and nature of such access), a nurse
or assistant should not allowed to exceed the prescribed office hours. For some
especially sensitive information, other contextual information such as the physical
location of the requester, the ID of the device from which the request originates,
should also be used in the evaluation, and expanding this set compared to a simple
role definition is enough to justify a separate category.

A key requirement in the field of healthcare is that access does not mean full
access to every element of the given document. In many cases it is strictly forbidden
to grant access to such information from which a third party might be able to
reconstruct very sensitive events and elements. For example, if one receives a
list of a patient’s medicines from a certain period of time, it is easy to infer vital
information that would otherwise be prohibited for that particular third party. The
evaluation process in a healthcare environment should be able to determine access
at a very fine granularity, essentially at the field-by-field level, and to mark or even
remove certain fields that should not be available at that security level. This is
also the reason why the standard security solutions of several large cloud providers
and databases fails, as they can only provide this functionality by including lambda
functions, trigger functions, and the like.

The last requirement is also the most unique and difficult aspect of healthcare
security. The break-the-glass case requires an access control model that provides
immediate access to key patient information to ensure the receiving of the necessary,
possibly life-saving care. This is essentially what happens in an emergency, when
life-saving surgery is required and neither the patient nor the doctor recording
and processing their health data is available to grant access. In a break-the-glass
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situation usually only a few records are required, but in that case it is important to
use very complex transformations. Only vital information should be accessed, while
every other element of the document must be either removed or encrypted. Without
the effective implementation of break-the-glass, no healthcare security system can
be used in real-life situations.

Based on these requirements, the definitions of our policy categories are:

• Role Evaluation: The policy has to determine whether based on the user’s
role or roles in the system, partial or full access should be provided;

• Contextual Evaluation: The policy has to determine whether the combi-
nation of the user’s role, various attributes and contextual information form
the basis for partial or full access;

• Contextual Modification: Aside from providing access, the policy should
also transform the data, removing or altering specific fields;

• Break-the-Glass: A specific requirement of a healthcare application. In the
case of an emergency, the policy should provide immediate access, while also
encrypting or removing sensitive information.

Our first step during the evaluation process was to test our evaluation concept
with different policies and different pressures. During this first phase we ran our
tests on OPA without including other elements of the proposed infrastructure and
stored the FHIR documents in its database, making it essentially a temporary FHIR
database. We measured attributes such as CPU load and memory usage, while
increasing the size of the input data set by a power of ten after each iteration, up
to a data set of one million records. The results of these experiments demonstrated
that the combined PDP/PDE/PIP concept was an acceptable candidate.

These results paved the way for the next step of our research: the integration
of the combined PDP/PDE/PIP node (OPA) with a prototype infrastructure and
the further evaluation of its effectiveness and latency in this environment.

3.4 The Telemedicine Security Abstract Role Set

First and foremost we defined a formal specification of each category, with the
following notations:

• F := {f1, ..., fk} marks the telemedicine record in question, where each fx is
a valid key-value pair of the record.
For example:
F := {(′subject′,′ PAT/1′), (′systolic bloodpress′, 120), ...}

• UR := {r1, ..., rl} where UR ⊆ F is a subset containing the key-value pairs
describing various primary or secondary owners of the record
For example:
UR := {(′subject′,′ PAT/1′), (′practitioner′,′ PR/A013′), ...}
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• EX := {e1, ..., em} marks the external context of the system at the time of
the policy evaluation as key-value pairs
For example:
EX := {(′datetime′,′ 2020−09−12T12 : 20 : 33′), (′ip addr′,′ 223.134.22.1′), ...}

• CX := {c1, ..., ck} is a set of conditional functions, which take an atomic
value as an argument and transform it to a boolean value. Each function is
represented as an (op, val) pair where op is a conditional operation, op ∈ {<
,>,≤,≥,=} and ci(n) := n opi vali
For example:
c1 := (>, 12), x := 5 =⇒ c1(x) := 5 > 12 =⇒ c1(x) := false
c2 := (=,′ bloodpressure′), x :=′ bodyweight′ =⇒
c2(x) := ’bodyweight’ = ’bloodpressure’ =⇒ c2(x) := false

• P(n) is a function describing a policy to be enforced by a PEP engine, where
fx ∈ F and P(fx) = Allow|Modify|Deny produces the decision regarding
the evaluated key and P(F) := {P(f1), ...,P(fk)}

3.4.1 Formal Definition of the Role Evaluation Policy

Definition 1. P(n) describes a Role Evaluation policy, if UR �= ∅ and for a given
user identifier ∃key(key, id) ∈ UR, then P(n) := ∀fi ∈ F P(fi) := Allow, else
P(n) := ∀fi ∈ F P(fi) := Deny

3.4.2 Formal Definition of the Contextual Evaluation Policy

Definition 2. P(n) describes a Contextual Evaluation policy if G := F∪EX, CE :=
{ce1, ..., cex} is a set of contextual conditions where 0 ≤ i ≤ x, cei := (keyi, ci), ci ∈
CX and ∃x : (keyi, valuei) ∈ G and P(n) := ∀fi ∈ F P(fi) := Allow, if ∀x :
(keyi, ci) ∈ CE : ∃(keyi, valuei) ∈ G and ci(valuei) := true, else ∀fi ∈ F P(fi) :=
Deny

3.4.3 Formal Definition of the Contextual Modification Policy

Definition 3. P(n) describes a Contextual Modification policy if similarly to the
Contextual Evaluation policy, G := F ∪ EX, CE := {ce1, ..., cex} is a set of
contextual conditions where 0 ≤ i ≤ x, cei := (keyi, ci), ci ∈ CX and ∃x :
(keyi, valuei) ∈ G but there is also a FX mapping, which FX : CE =⇒ F′ ⊆
F, with ∩0≤i≤x FX(cei) := ∅. If0 ≤ i ≤ x cex(gx) := false then
∀f ′i ∈ FX(cei) P(f ′i) := Deny, else ∀f ′i ∈ FX(cei) P(f ′i) := Allow

3.4.4 Formal Definition of the Break-the-Glass Policy

Definition 4. P(n) describes a Break-the-Glass policy if P(n) satisfies the require-
ments of the Contextual Modification with the further addition of a TX mapping,
identifying the attributes which have to be encrypted or modified TX : CE =⇒
F′′ ⊆ F, with ∩0≤i≤x TX(cei) := ∅ and ∪0≤i≤x FX(cei) ∩ ∪0≤i≤xTX(cei) := ∅.
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If0 ≤ i ≤ x cex(gx) := false then ∀f ′′i ∈ FX(cei) P(f ′′i ) := Deny, else ∀f ′′i ∈
FX(cei) P(f ′′i ) := Modify

3.5 Implementation Details

To achieve this goal, we defined a new set of guidelines based on the actual needs
of a healthcare system, instead of the proof-of-concept drafts from our previous
study. We defined two rules for each of the four categories - one simpler and one
more complex, the latter containing more operations or more resource-intensive
operations, or both. All algorithms run on multiple Observations received as part
of the input, but only returned those in their original or modified state which were
allowed by the policy.

The two policies of the Role Evaluation category included in algorithms 1 and
2 both focus on the identity of the practitioner. However, while role simple only
checks to see that the specified role identifier matches the practitioner’s identifier
in the document, role complex checks the care teams responsible for the patient
and only grants access if the requester is a member of those teams.

The main difference between the policies of the Contextual Evaluation category,
shown in algorithms 3 and 4, is the nature of the contextual attribute.

In context simple we check a high-level attribute, the status of the Observation
and an external attribute, the hour. Here context complex requires the PEP iterat-
ing through the component array of each Observation, finding each medical value
based on the defined LOINC identification code, and checking to see if the exact
value is greater than the threshold.

A key aspect to be evaluated was the efficiency of the PEP when iterating and
handling arrays, since in the current version of the OPA, the developers noted in
the official documentation [3] that the performance of such an evaluation engine
is the most efficient when it works with objects, and weakest when it must iterate
through non-indexed arrays.

Algorithm 1 A Role Evaluation policy in Rego returning only the Observations
where the current user is the Practitioner
Policy role simple[shell]

1: pract := input.practitioner � We get the Practitioner id from the request
2: shell := input.observations[ ] � We create a working copy from the list of

Observations
3: observation := shell.data � We iterate through the shell array and map the

Observation inner object
4: performer := observation.performer[ ] � We map the list of Practitioners of

the current observation
5: performer.identifier.value == pract � We check if one of the Practitioners

has the same id as the input. If so, it remains in the shell array and will be
returned, if not, it will be filtered out
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Algorithm 2 A Role Evaluation policy in Rego returning only the Observations
where the current user is member of one of the CareTeams, who received access
from the Patient
Policy role complex[shell]

1: pr := input.practitioner � We get the Practitioner id from the request
2: shell := input.observations[ ] � We create a working copy from the list of

Observations
3: observation := shell.data � We iterate through the shell array and map the

Observation inner object
4: performer := observation.performer[ ] � We map the list of Practitioners of

the current observation
5: cteam == performer.identifier.value � We get the identifier of the Performer
6: contains(’CareTeams’, cteam) � We call the built-in function to check whether

the identifier belongs to a CareTeam, and only to proceed if it is true. If the
Observation has no CareTeam at all, the evaluation returns false.

7: count(practition member of careteam(pr, cteam)) > 0 � We call a simple func-
tion which checks whether the identifier of the Practitioner is listed as a member
of a the CareTeam. If there is a match for even one of the CareTeams, to access
is provided

Algorithm 3 A Contextual Evaluation policy where access is granted only if the
status of the Observation is active and the time of access takes places between 8:00
and 19:00
Policy context simple[shell]

1: timearray := time.clock([time.now ns(), ’Europe/Budapest’]) � Using the
built in functions of Rego, we generate the array containing the parts of a
time string

2: hour := timearray[0] � We retrieve the first element of the timearray which
will always be the hour from the chosen timezone

3: shell := input.observations[ ]
4: shell.data.status == ’active’
5: hour ≥ 8
6: hour ≤ 19 � These last three lines are executed at the same time, if all of them

return as true, the Observation will be part of the result set

Algorithm 4 A Contextual Evaluation policy where the internal structure of
the Observation is analyzed and only a certain type with its value above a pre-
determined limit can be accessed
Policy context complex[shell]

1: shell := input.observations[ ]
2: component := shell.data.component[ ] � We iterate through the inner at-

tributes of the Observation
3: component.code.coding[0].code == ’32419-4’
4: component.value > 5
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Algorithm 5 A Contextual Modification policy where we remove the Patient iden-
tifiers from Observation
Policy modif simple[shell]

1: observation := input.observations[ ]
2: clean := object.remove(observation, [’patient’, ’data’]) � We remove the ex-

ternal patient identifier and the entire nested data object - since in the current
version of Rego we cannot modify existing key-value pairs only remove existing
or add new ones

3: inner new := object.remove(observation.data, [’subject’]) � We create a new
nested data object without the subject fields

4: shell := object.union(clean, {’data’: inner new}) � We create the result Ob-
servation by merging the two filtered versions

Algorithm 6 A Contextual Modification policy where we remove a specific nested
component from every Observation

Policy modif complex[shell]

1: observation := input.observations[ ]
2: clean := object.remove(observation, [’data’])
3: no components := object.remove(observation.data, [’component’]) � We need

to filter the nested object as well
4: new components := [component|
5: component := observation.data.component[ ];
6: component.code.coding[0] != ’18748-4’] � We filter the nested object based

on the LOINC codes
7: new data := object.union(clean, {’component’: new components})
8: shell := object.union(’newdata’, {’data’: new data})

The majority of the documents in the FHIR standard use the array structure
very often, and if the performance of array operations is significantly worse than
in any other case, this would provide a strong argument against adapting our
concept. The modification operation in a PEP node is very demanding in itself,
since the engine treats every variable as a constant due to their non-imperative
behavior. For this reason, if we need to modify or redefine a particular field, we
must first create a copy of the original object without the value, then create a
new value, and finally create the response by adding the new value to the filtered
object copy. The Contextual Modification policies are shown in algorithms 5 and 6.
Here modif simple simply removes the patient data from the Observation and the
encapsulating shell, while modif complex must create a new component array for
each Observation that does not contain urls pointing to sensitive patient documents.

The Break-the-Glass Policies shown in algorithms 7 and 8, are the most complex.
These policies are expected to be fast, accurate, and effective, because they are most
commonly used in emergency scenarios when a doctor or nurse needs to access
limited patient information to provide the necessary care.
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Algorithm 7 A Break-the-Glass policy where we hash the identifier of the
CareTeam in the Observations
Policy break simple[shell]

1: observation := input.observations[ ]
2: clean := object.remove(observation, [’data’, ’careteam’])
3: no performer := object.remove(observation.data, [’performer’])
4: doctors := [performer| �We create a performer array without the CareTeams
5: perfomer := observation.data.performer[ ]
6: performer.type == ’http://hl7.org/fhir/practitioner.html’]
7: hash careteams := [perf | � We create an array from the hashed CareTeams
8: performer := observation.data.performer[ ]
9: not performer[′type′] � CareTeams do not have the optional type attribute

10: perf := {’identifier’: {’value’: crypto.md5(performer.identifier.value)}}]
11: new performers := array.concat(doctors, hash careteams)
12: new data := object.union(clean, {’data’: new data, ’careteam’: {’identifier’:

{’value’: crypto.md5(observation.careteam.identifier.value)}})

Algorithm 8 A Break-the-Glass policy where we hash every identifier for Patients,
Practitioners and CareTeams
Policy break complex[shell]

1: observation := input.observations[ ]
2: clean := object.remove(observation, [’data’, ’careteam’, ’practitioner’, ’pa-

tient’])
3: removed body := object.remove(observation.data, [’performer’, ’subject’])
4: new body := object.union(removed body,
5: {’subject’: {’display’: crypto.md5(observation.data.subject.display), identi-

fier: {’value’:
crypto.md5(observation.data.subject.identifier) }},

6: ’performer’: [perf |
7: performer := observation.data.performer[ ]
8: perf := {’identifier’: {’value’: crypto.md5(performer.identifier.value)}}]})

� We also tried whether a nested instruction set would increase or stabilize
resource consumption

9: shell := object.union(clean,
10: {’data’: new body, ’patient’: crypto.md5(observation.patient),
11: ’practitioner’: crypto.md5(observation.practitioner),
12: ’careteam: {’identifier’: {’value’:

crypto.md5(observation.careteam.identifier.value)}}})

In these scenarios, the system must remove or encrypt everything else that
goes beyond the most necessary attributes, and with two policies we tested how
resource consumption varies when we wish to encrypt a single attribute that is
deeply embedded in the document and requires filtering in break simple and in
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break complex when we wish to encrypt every identifier in the document that could
later be used to identify users in the system.

4 Results

4.1 PEP Performance between Categories

After evaluating the average performance of the various categories, we observed
several interesting trends, compared to what we originally expected. The most
notable of these is the relatively faster evaluation time of the Contextual Evaluation
policies compared to the Role Evaluation category, as seen in Figure 4.

Figure 4: Average Delay on PEP by Categories

While the CE policies are more complex in nature, it seems that if the contextual
information sets the result as true or false, the evaluation is significantly quicker
than the cases when an internal examination of the input documents is required.

We observed a similar trend with the average CPU load of the categories, shown
in Figure 5 with the Contextual Evaluation policies demanding slightly less percent-
age of the CPU time compared to the Role Evaluation policies, while the Break-
the-Glass policies remain the most demanding ones. However, the overall difference
between the first two and latter two categories is not as big as on the response de-
lay. Another key observation is that while the size of the input was below 1000
documents (which is already an unrealistically large query size for a real-life ap-
plication), not even the Break-the-Glass policies required more than 50% of the
CPU.
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Figure 5: Average CPU Load of OPA by Categories

The memory usage of the categories, shown in Figure 6 on the other hand,
while still showing the trends of the previous figures and requiring only manageable
amount of memory when evaluation smaller inputs (not even Break-the-Glass poli-
cies demanding more than 50-60 MB while the input size is around 50 documents),
this demand shows a sudden jump after the input size reaches 1000 documents,
with even the Role Evaluation policies requiring around 100-150 MB to evaluate
inputs between sizes 1000 and 2000.

Figure 6: Average Memory Usage of OPA by Categories
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The measurements were taken with the PEP solution restarted and reinitialized
between each measurement, since, as we have shown in our previous paper, OPA
employs a very lazy approach towards garbage collecting, cleaning the memory only
when it is required by the system or an especially large evaluation. This fact makes
these sizes even more alarming for a real-life scenario, since the size of OPA in the
memory can grow significantly during a series of evaluations.

Based on these results, while the CPU load and the response delay seem to be
manageable requirements, the memory demand, combined with the experienced lazy
garbage collecting process of OPA might requires a custom build or external process
that manages and frees the memory after the evaluations are finished to optimize
this aspect of the PEP nodes.

4.2 PEP Performance in Categories

We ran each policy with each size at least 30-50 different times to collect the raw
data for the statistics shown in the tables below, and these group the policies
belonging to the same category. For each policy, we calculated from the collected
data sets the mean value of CPU load, memory usage and response delay on the
PEP (OPA) node.

Although the question of whether to use the same constant inputs for each
evaluation, or use HTTP(S) requests that simulate a real-world application is a
complex element for this phase of our research, we decided to use dynamic inputs
to get more precise, realistic results.

4.2.1 Role Evaluation Policies

A comparison between Role Evaluation policies is shown in Figure 7. While, as we
have assumed, the complexity of role complex induces a higher latency, the total
difference between the two policies is not very significant. Even with an input of
2000 records the PEP was able to filter out the restricted ones in half a second.

The effects on CPU and memory, as shown in Figures 8 and 9, are somewhat
more demanding – when 2000 documents are sent, 70% of the processor is required
to evaluate the policy and about 140 MB of the memory – a clear indication of how
costly it is to perform subqueries in isolated structures, such as the list of careteams
and their members.

Based on these results, it is evident that the proposed solution is capable of
handling more complex Role Evaluation policies without difficulty, but it is advisable
to store the teams, groups, institutions in indexed objects rather than in arrays.

4.2.2 Contextual Evaluation Policies

A comparison of the two Context Evaluation policies also produced some interesting
results, which are presented in Figures 10, 11 and 12. Our main objective here was
to determine what kind of contextual evaluation is more demanding, and on the
basis of the data it is clear that array-based evaluations are generally more complex,
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Figure 7: Average PEP Latency in Role Evaluation category

Figure 8: Average CPU load in Role Evaluation category

but in small evaluations they are actually cheaper than collecting and comparing
external information such as dates.

This calls into question some notable architectural aspects of the infrastructure,
such as whether this context information should be collected and forwarded by the
proxy as part of the input data. Seeing that in some cases it is possible on a larger
scale that the PEP deployment can handle traffic from end nodes in different time
zones, it might be a good idea to omit such internal queries as a general design
pattern of the policies.
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Figure 9: Average Memory usage in Role Evaluation category

Figure 10: Average PEP Latency in Contextual Evaluation category
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Figure 11: Average CPU load in Contextual Evaluation category

Figure 12: Average Memory usage in Contextual Evaluation category
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Moreover, it is interesting to note that after some minor differences, besides
inputs with more than 20 documents, the metric values start to converge, since
after a certain point in the measurement set a significant portion of the documents
is rejected during the evaluation of context1 due to their inactive status, thus the
value is set false, before the engine starts evaluating the relational conditionals.

Our interpretation of these results can be summarized as follows: It is clear that
policies with contextual evaluation may be as effective as simple Role Evaluation
policies, but where possible, contextual information must be provided as part of the
input, rather than being queried on the PEP node.

4.2.3 Contextual Modification Policies

The results of the Contextual Modification policies are included in Figures 13, 14
and 15. These results showcased another important aspect of the evaluation engine
that could be one of the pillars of the design patterns for defining the policies. It
was expected that modif complex would be the more complex of the two.

Instead of this expected result, the measurements clearly indicate that neither is
significantly more demanding. In some cases modif complex consumes more CPU,
and it has slightly more latency than modif simple due to the demanding array
copy and filter mechanisms, while modif simple requires slightly more memory.

Modification policies are much more demanding than simple access evaluations.
Nevertheless, they can be implemented effectively if we take into account the in-
creased costs. We also wish to investigate the possible patterns and anti-patterns in
order to write more effective policies for this type.

Figure 13: Average PEP Latency in Contextual Modification category
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Figure 14: Average CPU load in Contextual Modification category

Figure 15: Average Memory usage in Contextual Modification category
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4.2.4 Break-the-Glass Policies

Based on the results of our previous evaluations, we assume that Break-the-Glass
policies will be the most resource-intensive portion of our evaluation set, and the
results (see Figures 16, 17 and 18) were as we thought they would be, but again
with some minor differences from our original expectations.

While the CPU load and memory usage of the two policies are almost identical, it
actually takes a little longer to evaluate break simple than break complex, although
based on the sheer number of operations (especially the number of encryption
operations) in break complex, it should have been a much more expensive policy
compared to break simple. The answer lies in the nature of operations that the
policy executes: It filters an array, then creates a new array to store an encrypted
value, and then concatenates two arrays to be embedded in an object. Apparently,
these array operations, with the emphasis on the concatenation operation, which
is unique in our evaluation set for this policy, is just as resource-demanding as its
pair.

Just as we expected, the Break-the-Glass policies are the most demanding ones
that can be evaluated on the PEP node, but even with the increased cost they can
achieve the expected results. While the essence of these policies is to transform and
encrypt the data, it is important to avoid array operations as much as possible, as
they only further increase the cost when potentially cheaper workarounds might be
available.

Figure 16: Average PEP Latency in Break-the-Glass category
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Figure 17: Average CPU load in Break-the-Glass category

Figure 18: Average Memory usage in Break-the-Glass category
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4.3 PEP Performance in Infrastructure

It is interesting to see how the latency of the PEP node affects the latency of
the entire infrastructure. From each policy pair we took the one with the greater
response delay and compared it with the system latency in Figures 19, 20, 21, and
22.

Figure 19: System Latency and PEP Latency on role complex

Figure 20: System Latency and PEP Latency on context1
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Figure 21: System Latency and PEP Latency on modif simple

Figure 22: System Latency and PEP Latency on break simple
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Based on these results, we may conclude that when the data set is increased,
the increase in system-wide latency, PEP latency and the relative latency of the
two components are all nonlinear.

The difference between the complexity of the various policy categories, on
the other hand, is not always as clear as we initially assumed. The results of
role complex and context simple, for example, are almost identical, and the care
team identifying role complex even turns out to be somewhat more demanding
than context1, which has to iterate and filter the contents of an embedded ar-
ray, and with an input of size 2000 on context simple, the PEP only provides the
21.4370% of the full system latency and 25.9672% on role complex.

However, most of our expectations were confirmed by the results we obtained.
Although it is clear that the identification of good practices, patterns and anti-
patterns is necessary in the next phase of our research to further optimize the use
of the PEP, the relative complexity and cost of the different categories were as
expected. There is an overall latency and efficiency of the prototype infrastructure
– a barely noticeable increase when we consider that the majority of healthcare
applications, including our client application in its unmodified state. This requests
100 or 200 documents in a single operation, and we found the PEP (and OPA as
its implementation) to be a very effective component of our security solution.

5 Conclusions

On the basis of our results, we conclude that the PEP (OPA) is indeed a suitable
choice for our architecture and that the concept can be further developed. In the
previous sections, we presented our proposed infrastructure and methodology, the
categorization of security policies required in the healthcare sector, and a set of
policies for different evaluations. When interpreting the results, we demonstrated
the effectiveness of our concept, with only a relatively small increase in the overall
latency in exchange for an effective healthcare security solution that is independent
of the exact back- and front-end applications. In addition, we have also identified
some good or definitely avoidable practices in the OPA policy definition that re-
quire further research to make it feasible in practice. To summarize these results
based on the requirements described in the Introduction for an appropriate policy
enforcement element in the domain of telemedicine:

• We showed that our proposed PEP can function and evaluate access in a
telemedicine infrastructure with a minimal impact on the overall latency of
the system, without any component explicitly being aware of its presence.
Even with the largest input size, the evaluation delay caused by its inclusion
was at most 35% of the total response delay;

• We showed that it can evaluate and transform the input with manageable
CPU load and memory usage even for inputs that are unrealistically large in
the healthcare workflow;
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• Since our PEP configuration only depends on the input structure and our
current selection is also available in Go and WebAssembly languages, it can
be effectively used at any point in the infrastructure. Because of its internal
database it can also work when the upper levels of the infrastructure are
unavailable.

• We shoved that every category of our policy terminology can be effectively
implemented in the script language of the OPA engine.

In the future we plan to continue our research in several directions. When
interpreting the results, we found several possible patterns and anti-patterns for
writing PEP policies. We intend to investigate these further in simulated an real-
world scenarios as well, identify the possible bottlenecks and bad practices for
deployment and provide other developers and researchers with a good guideline for
implementing healthcare policies.

Since our infrastructure prototype turned out to be successful, the next step will
be to further evaluate the capabilities of our proposed PEP integration in terms
of portability, place it at different points in the infrastructure and record their
behavior and efficiency.

If we succeed with these future steps, we hope to be a step closer to solving the
problem of security and access control in telemedicine.
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