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Component-Based Error Detection of P4 Programs∗

Gabriella Tótha and Máté Tejfelb

Abstract

P4 is a domain-specific language to develop the packet processing of net-
work devices. These programs can easily hide errors, therefore we give a
solution to analyze them and detect predefined errors in them. This paper
shows the idea, which works with the P4 code as a set of components and
processes them one by one, while calculating their pre- and postconditions.
This method does not only detect errors between the components and their
connections, but it is capable to reveal errors, which are hidden in the middle
of a component. The paper introduces the method and shows its calculation
in an example.

Keywords: P4, error detection, component

1 Introduction

We introduce a component-based formal method to detect errors in P4 programs.
The antecedent of the method is an error detection, which is based on a rule system
[13]. With this idea, we approach the detection from backward and process the code
from the smallest units to the biggest ones. This solution can not only check the
error possibilities but give additional information about the code for the developer.
The prototype of the tool, which is based on the method, is being implemented1.

P4 programs We work with the P4 language [5, 2, 6, 1], which is a domain-
specific programming language to develop the packet processing of network devices.
When a packet arrives at a device as a bitstream, the P4 program gets that bit-
stream as the input and starts to work with it. In Figure 1 there is an example
program. P4 programs work with the header information of a network packet. The
developers can define what kind of header information they work with (rows 1-16).
P4 programs have three main processing parts: parser, modifier, and deparser. The
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Figure 1: Example P4 code

parser (rows 18-27) gets the input and extracts the header information from the
packet. The modifier part (rows 28-49) modifies the header information – based on
match-action tables, the content of which comes from an external controller – and
after the modification, the deparser (rows 51-54) creates the new packet with the
calculated header information to forward it to the network.

Software-defined networks have two main parts: the control plane – which con-
trols the network traffic – and the data plane – which describes the process of a
network packet. As we can see from the example, P4 programs can define the
data plane. Therefore, the behavior of the programs depends on the control plane,
which cannot see from the P4 code – for example, there is a program structure, the
match-action table, which is only a frame in the code, and its content is filled by
an external controller during the execution.

2 Related Work

There are different approaches to analyze P4 programs.

There are tools, which work with the previous version of P4 – the P414 – al-
though the main concept of these projects is similar to the new version. One of
them is P4V [9], which deals with errors caused by reading or writing of invalid
headers, the arithmetic overflow, and proper accessing of header stacks. It cre-
ates an annotated program from the input source and verifies it by checking the
correctness of a first-order formula, which describes the execution of the program.

Vera [11] is another one, which works with symbolic execution, which starts with
the generation of the parsable input packet, and then checks all possible execution
path with the Symnet [12] static analysis tool. They investigate similar error cases,
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for example, header validity, implicit drops.
Assert-P4 [8] also works with P414, and uses symbolic execution too, although

they check program-specific errors, which can be described by the developer. There-
fore it can check errors, which can not be detected only from the simple P4 source,
but from an annotated P4 code. It translates the annotated P4 code to a C-model,
and then it checks the different properties, which were given in the code, with
symbolic execution.

There are other tools, which work with the actual version of P4 – the P416.
There is an approach, which does data flow analysis of P4 programs [4]. In this
research, they used an extended version of a control-flow graph, the def-use graph.
For all possible execution paths, they execute the data flow analysis, which collects
the usage of the different variables and header information. Based on this collected
data, their solution can detect errors like using an undefined field.

Although the previous projects are based on static analyzes, there are other
solutions too. P4RL [10] does runtime verification, therefore it is able to analyze
behaviors which are come from the control plane. The behavior of the network
should be described by the user, therefore it can check if all of them are correct
during the execution.

Another approach is SafeP4 [7], which is a domain-specific language, which was
created to develop correct P4 programs.

Our solution works with the new version of P4 – the P416. It is a static analyzer
method, which uses only the P4 code as an input. Based on the code, we can extract
the specification of the program, as pre- and postconditions, and we detect errors by
analyzing the pre- and postconditions of the different components of the program
and checking their relationship with the specification of the program. We detect
errors, which can be caused by the usage of invalid header and uninitialized fields.

3 Motivation

P4 gives a new possibility for the protocol-independent development of the pro-
grammable switches. However developers can create more flexible programs, it is
easier to make a mistake in them. That is the reason, why we need a tool, which
can detect errors in our code.

As it was mentioned in the Introduction, the P4 programs do not define the
whole behavior of the network, but a part of it. Therefore, some verification tools
expect annotated programs and additional information about the planned behavior
of the program, and they can check if those properties are correct or not. We would
like to detect errors based on only the raw P4 code, therefore the developers will
not have any other job besides developing the P4 program.

We would like to create a tool, based on our theoretical results, to help the
developers to write correct P4 programs. In this first version of the method, we
concentrate only on those errors to detect, which are caused by using invalid headers
and uninitialized fields. Using them can cause undefined behavior by unknown
values. However, we still work with the subset of the P4 language, but we plan to
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extend the rule system to work with a bigger language and detect more error cases.

This method is based on the precondition and postcondition of the program
units. As we see in Figure 1, there are different programming structures in P4:
actions, tables, control functions. It works with them one by one, and calculates
condition pairs for each of them, starting from the smallest ones – like actions –
finishing with the biggest ones – like control functions.

4 Method of detection

The input of the method is the source code that will be checked. The whole process
contains three main phases: the Pipeline Analyzer, the Parser/Deparser Analyzer,
and the Final Checker. The Pipeline Analyzer has two parts: the call graph, and
the Condition calculator. The Pipeline Analyzer checks all of the components –
actions, tables, and control functions – in the P4 source and calculates pre- and
postcondition pairs for them while checking their correctness. The Parser/Deparser
Analyzer works with the parser – gets the main precondition from it – and the
deparser – gets the main postcondition from it. The Final Checker works with the
calculated pieces of condition and checks that if every main precondition matches
with at least one needed precondition. If the matching is not correct then it means
that there are some errors in the code, because after the given parsing – which is
described by the main precondition – there is not any execution path, which could
work properly. However, if the matching is right in the preconditions then it checks
the same with the postconditions.

Figure 2: Model of the method
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4.1 Pipeline Analyzer

The analyzer consists of a call graph and the Condition Calculator. The call graph
contains the relationship of the call between the control functions, tables, and
actions. Based on the graph it will make an order of these components to be
processed by the Condition Calculator. The Condition Calculator goes through
all of them and creates their pairs of pre- and postcondition, which describes the
correct working of the program.

This phase processes the modifier part of the P4 code, and calculate pre- and
postconditions for the different components. The result of this phase shows the
claim – what kind of header information it needs to work well – and the offer-
ing – what kind of header information it will create after the processing – of the
component.

Call Graph The call graph handles the modifier part of the input. Its vertices
are the components of this part – the control functions, match-action tables, and
actions – and the directed edges describe a calling relation between them.

The processing of the modifier part, in this version of the method, is the simplest
packet processing path, where there is only an ingress pipeline. Therefore there is
an initial vertex, which is the main ingress control function. The forwarding steps
to process the whole control flow and whenever a component calls a component –
if that has not been added to the graph as a vertex, it will create a vertex for it –
and will give an edge from the vertex of the calling component and the vertex of
the called one.

After the processing of the code, it will create a list of the components. This list
starts with those components, which do not depend on any other components, –
they have no outgoing edges –, it continues with components, which calls the com-
ponents, which have already been added to the list, until the last two components,
which will be the main function of the ingress. In the call graph there can not be
any loop, because of the specification of the P4 language [6], which defines that
neither direct recursion nor mutual recursion can be between actions and controls.

Condition calculator The list of the components gives a hint for the Condition
Calculator in which order it should process the components, therefore whenever a
command of a component’s calling is processed, the condition of that component
will have been calculated. During the processing of the components, it uses a rule
system, which will calculate a ConditionState.

ConditionState ∈ {name : [(pre : {valid : [ids], invalid : [ids]},
post : {valid : [ids], invalid : [ids]})]}

Figure 3: Condition State Describer

The type of the ConditionState – Figure 3 – is a set of pairs, where a pair
shows the name of the component and its list of pre- and postconditions as pairs.
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Every condition consists of a valid and an invalid container, both of them contain
a list of headers’ and fields’ names. During the method, we use the valid word as
a synonym of the property of initialized fields.

�: (ConditionState×Name× Program) → ConditionState

Figure 4: Type of #

The Condition Calculator is defined by the operator #, the type of which can
be seen in Figure 4. It works with a known ConditionState, a name of a component
– the one, that is processed when it uses this rule – and the program code. The
rules are based on the structure of the program, therefore they have a deterministic
usage. In this version of our method, we only work with the main structures of the
program, therefore the rules only use a subset of the P4 language.

We define the behavior of the Condition Calculator with a rule system. It uses
rewriting rules – we have an expression in the bottom and we rewrite it to the top
of the rule. In Figure 5, there are the basic rules, which can be used for the subset
of the P4 program. The rules for the assignment, sequence, table, skip, branch,
table calling, and validity settings.

The preprocessing of the usage of the rules is to create the initial ConditionState.
It is an empty state, where all of the components are stored, but all of them have
only one condition, which says that the drop is invalid in the postcondition. The
drop is a unique name in the conditions, which shows if the packet is dropped – it
is valid, if it is dropped, and invalid if it is not dropped.

In the rules, we use some notations:

• (A ‖ B) shows a rewriting from A to B. If the rewrote element has already
been in a set, then it will be deleted from that place, and it will be only in
the new set.

• ids means the type of the identifications. For example {ipv4, ipv4.ttl} is a set
of ids i.e. {ids}.

• Ids is a function, which gives the names from an expression. For example the
Ids of the ”ipv4 .ttl−1” is a {ipv4, ipv4.ttl}, which contains the identification
of the header and the field of the expression.

• newIds is a function, which gives a subset of the Ids. These elements have
not been used in any condition state.

• oldIds is a function, which gives a subset of the Ids. These elements have
already been used in a condition state.

• fields is a set of the identification of the fields of the given expression.

• header is a set of the identification of the headers of the given expression.
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• C(conditionState, condition) calculates those pairs from the condition state,
which fit to the condition.

• H.n shows the pre- and postcondition pairs of the component named n in the
Condition State H.

• Empty(H.n) creates an empty block for the new component.

• V : {ids} → Bool; V (I) = ∀i ∈ I(H.n.post.V alid(i)). It checks if every
header, field or variable identification is valid in the postconditions of the
actual component – the examined ConditionState H and component n come
from the rule.

• A∪̇B ::= ifcond(A.post =:= B.pre,A.pre,A.post×B.post ↑) and

A %B ::= ifcond(A.pre =:=, A.pre×B.pre,A.post×B.post ↑), where
* ifcond(condition, precondition, postcondition) - it checks if the given
condition is true. If it is true, then it creates a pre- postcondition pair,
where the precondition is defined in the second and the postcondition is
defined in the third argument.

* =:= checks if two given conditions fit or not.

* × merges the given conditions. If there is an ↑ in one side of the merging
it means to use that condition as a prior one – if there is a header
information, which appears in both conditions, the condition with the ↑
will be stored.

The rules The rules are based on the structure of the program, therefore
the calculation is deterministic. On the sides of the rules, we can see two types
of possible calculations. In the rules, there is the form H,n # S, where H is a
ConditionState, n is the name of the processed component and S is the Program
that it processes. In one case, these rules can be recursively rewritten by the same
form of expression – like in Rules 2, 6 – or in the other case it can be rewritten
with a ConditionState – as in Rules 1, 3, 4, 5, 7, 8.

Rule 1 shows that the Skip does nothing, therefore the result will be the calcu-
lated condition state.

Rule 2 defines the processing of the sequence construct with composition – first,
it processes the S1 program, and from the result of this calculation it processes the
S2 program.

Rule 3 describes the assignment. Here we can see a side condition of the rule,
which says to check if the identification of the expression expr – right side – and
the header of the e – left side of the assignment – is valid. The side condition in
this usage means, it will continue the calculation with those pairs of conditions,
which are correct based on the side condition – in the pairs of conditions, where
the side-condition is false, the process shows an error case. If the condition is true
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H
1.

H,n # Skip

(H,n # S1) # S2
2.

H,n # S1;S2

H[H.n||H.n[pre→ V alid(expr.newIds, e.newIds.header),

post→ V alid(e.Ids, expr.newIds)]]
3.

H,n # e = expr

if V (expr.oldIds)&V (e.oldIds.header)

H[H.n||H.n[post→ {V alid(h), Invalid(h.fields)}]]
4.

H,n # h.setV alid()

H[H.n||H.n[post→ Invalid(h, h.fields)]]
5.

H,n # h.setInV alid()

(H[C(H.n, cond)]), n # S1 ∪ (H[C(H.n, !cond)]), n # S2
6.

H,n # if (cond) S1 else S2

H[H.n||
n⋃

i=1

(H.n[pre→ V alid(k.Ids), post→ V alid(k.Ids)] % ai)]

7.
H,n # keys : k actions :{a1, ..., an}

H[H.n||(H.n ∪̇ H.table name)]
8.

H,n # table name.apply()

Figure 5: Definition of # in a subset of the language

then it refreshes the condition state of the processed component by giving the new
identifications with a valid property to the precondition and sets them valid in the
postcondition too – because this command has not changed them – and sets the
left side of the assignment to valid too – because it has just got a new value.

Rule 4 and 5 describe the validity setting. These functions set the validity of the
header to valid or invalid – depends on the called function setValid() or setInvalid()
– and set all of the fields to uninitialized.

Rule 6 gives the calculation of the branches. It needs to work with two different
execution path – one where the condition is true, and one where it is false. If
we check the actual condition state, it may contain several pairs of pre- and post-
condition, therefore it describes both of the possible executions. In this rule, the
calculation divides into two ways, these are calculated separately and their result
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will be joint.

Rule 7 calculates the conditions for the tables. It is important for the tables
to read valid headers and initialized fields as keys. Although when this rule is
used, we process a fresh component, therefore it does not need to use any side-
condition, because this condition will be described in the precondition. First, it
creates the precondition, which contains the condition of valid keys, and then it
uses the precalculated conditions of called actions and merges them into several
pairs of conditions. It checks if the preconditions of the actions fit the precondition
of the table, and stores the merged conditions – uses the merged preconditions and
the merged postconditions, where the postconditions of the actions are the stronger.

Rule 8 describes a table calling. In this case, the conditions for of the table
has already been calculated, therefore it only needs to merge them to the actual
conditions. In this merge, it has to check if the actual postcondition and the
precondition of the table fit, and when it is correct it can merge them – uses the
actual preconditions and merge the postconditions, where the postcondition of the
table is the stronger.

4.2 Parser/Deparser Analyzer

The Parser/Deparser Analyzer is based on our previous paper [13]. It uses the
parser to describe the main preconditions and the deparser to defines the main
postconditions of the whole program. Therefore it describes the possible header
information of the input and the output packets. The result of this is not pairs of
conditions, but sets of pre- and postconditions. These conditions are not connected
– are not in pairs –, they describe that what kind of initial states we would like to
start our program and which final states are proper for the end.

There can be more main pre- and postconditions because parser and deparser
can contain branches. In the main postconditions besides the conditions from the
branches, there is another unique condition, which describes the case, when the
packet is dropped. In this case, the drop is valid, and the validity of the other
header information is irrelevant.

4.3 Final Checker

The task of the Final Checker to verify if the expected main pre- and postconditions
of the program – which come from the Parser/Deparser Analyzer – and the actual
pre- and postconditions fit well to each other. For this calculation we can generate
a formula – Figure 6 from the calculated conditions and check if the formula is
valid.

∀Pr ∈ MainPre, ∀p ∈ pipeline condition ,
∃Po ∈ MainPost : ((Pr ⊃ p.pre) ∧ (p.post ⊃ Po))

Figure 6: Formula for verification
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It checks if the program from every initial state – which are states, where the
precondition is true – there is a final state – which are states, where the postcon-
dition is true – to reach. Therefore it checks for all precondition if they have at
least one postcondition to fit based on the condition of the components. These
components describe the pre- and postconditions for the correct working of the
component. It checks, if any of the preconditions of the biggest component – in
this version, it is the main ingress control function – is correct based on the main
precondition. If there is one, then it checks the postcondition of it and checks the
correctness of the actual postcondition.

If there is an actual precondition, which does not fit the main precondition,
it means, there is an execution path, which will not work properly. If there is
an actual precondition, which fits a main precondition, but the postconditions are
not fitting, it means, during the calculation of that execution path, there will not
be any problem, but the final state will not be correct for the specification of the
program – in this case, the deparser of the program.

4.4 Error detection cases

The method can detect error cases in four different ways.

Condition Calculator It can detect errors, those are caused by the code of a
component or can detect if the components are not matching. Three examples can
be seen in Figure 7.

In the left one, act1 and act2 contains inside errors, which come from the bad
usage of the method setValid() and setInvalid(). The side-effect of both methods
is to change the uninitialized fields of the header. Therefore in the first case, when
it would like to read the right side of the assignment, it will get a valid header and
uninitialized field, so the read value is unknown. In the second case, on the left
side of the assignment, it would like to write a field of an invalid header, which is
an error case too. Both of them will be detected when it uses Rule 3, when the
side-condition will be false in the process of the assignment.

On the right side of Figure 7, there is an example of the components, which
are not matching. There are two components: the table t and a control function.
The precondition of the table t is: V alid(ipv4, ipv4.dstAddr), because it reads the
ipv4 .dstAddr field, so it need a valid header and initialized field. Although the true
case of the branch says that the ipv4 is invalid – the postcondition of the control
function stores it. Therefore when it uses Rule 8, it will not be able to merge
the conditions, because the precondition of the table and the postcondition of the
control function will not fit.

Final Checker The other case, when errors can be detected, is the process of
the Final Checker. It can detect if the specification of the program does not fit the
actual conditions i.e. starting the program from any initial state – where the main
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Figure 7: Error cases in Condition Calculation

precondition is true – it can reach one of the final states – where the postcondition
is true. In this phase, there can be two types of errors.

The first case is when the preconditions – of the main and the actual conditions
– are matching, but there is no main postcondition, which fits the actual postcon-
dition. In this case, although the program can start the execution from a good
state, it will reach a state, which is not expected by the deparser – the calculated
header information will be not correct for the program.

The second case is when there is no matching actual precondition for the main
precondition. This means that starting from that input header information, the
program will reach an error, the execution will be incorrect.

5 Case study

Figure 1 is an example P4 program which will be used to show an example usage
of the method.

Figure 8: Call graph of the example program

Pipeline Analyzer First it creates the call graph. The graph of the example can
be seen in Figure 8. There is only an ingress pipeline – MyIngress –, which calls
one table – t– , which can call one of the three actions – ipv4 create1 , ipv4 create2
and drop. Based on the graph it can create the following list to define the order of
the processing:
[ipv4 create1 , ipv4 create2 , drop, t ,MyIngress].
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{ MyIngress : [ (
pre : { va l i d : [ ] , i n v a l i d : [ ] } ,
post : { va l i d : [ ] , i n v a l i d : [ drop ] } ) ] ,

t : [ (
pre : { va l i d : [ ] , i n v a l i d : [ ] } ,
post : { va l i d : [ ] , i n v a l i d : [ drop ] } ) ] ,

i p v4 c r e a t e 1 : [ (
pre : { va l i d : [ ] , i n v a l i d : [ ] } ,
post : { va l i d : [ ] , i n v a l i d : [ drop ] } ) ] ,

i p v4 c r e a t e 2 : [ (
pre : { va l i d : [ ] , i n v a l i d : [ ] } ,
post : { va l i d : [ ] , i n v a l i d : [ drop ] } ) ] ,

drop : [ (
pre : { va l i d : [ ] , i n v a l i d : [ ] } ,
post : { va l i d : [ ] , i n v a l i d : [ drop ] } ) ] }

Figure 9: Initial ConditionState

Based on the order of the list, the Condition Calculator starts the calculation
from the expression, which is in Figure 10, where Empty is an initial ConditionState,
which can be seen in Figure 9, which is mentioned in section 4.1.

(((Empty, ”ipv4 create1” � ipv4 create1), ”ipv4 create2” � ipv4 create2),
”drop” � drop), ”t” � t), ”MyIngress” � MyIngress

Figure 10: Initial expression

Condition calculator The action ipv4 create1 consists of sequences – Rule
2 – of two assignments – Rule 3 – and one setting of validity – Rule 4. Therefore
there will be three rewritings of the conditions. When it starts the processing,
there is only one pre- and postcondition pair, where the only condition says that
the drop is invalid. The process of the first assignment – hdr .ipv4 .srcAddr =
hdr .ethernet .dstAddr – does not contain any side-condition, because it has just
started the calculation. Therefore it will add the ethernet , ethernet .dstAddr and
ipv4 to the Valid conditions in both of the pre- and postcondition – because it
would read the right side, and it can only give value to a field of a valid header in
the left side of the assignment. During the calculation, the postcondition describes
the actual state. Therefore we will try to continue the process with the second
assignment – hdr .ipv4 .dstAddr = dstAddr . The side-condition checks, if the header
of the written field is valid – ipv4 is valid in the actual state or in the postcondition
–, and if the read expression is valid – dstAddr is the parameter of the action,
therefore the side-condition is not working with it. The validity is correct, so it
adds the ipv4 .dstAddr to the Valid side of the postcondition – because after the
assignment, its value will be initialized. After the assignments, the program tries
to set the validity of the header ipv4 to valid. It changes only the postcondition by
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make all of the fields of ipv4 – ipv4 .srcAddr , ipv4 .dstAddr and ipv4 .ttl – invalid.

The calculation of the other actions similar to it, their results can be seen in
Figure 11.

i p v4 c r e a t e 1 : [ (
pre : {

va l i d : [ e thernet , e the rne t . dstAddr , ipv4 ] ,
i n v a l i d : [ ] } ,

post : {
va l i d : [ ipv4 , ethernet , e the rne t . dstAddr ] ,
i n v a l i d : [ ipv4 . t t l , ipv4 . srcAddr , ipv4 . dstAddr , drop ] } ) ] ,

i p v4 c r e a t e 2 : [ (
pre : {

va l i d : [ e thernet , e the rne t . dstAddr ] ,
i n v a l i d : [ ] } ,

post : {
va l i d : [ ipv4 , ipv4 . srcAddr , ipv4 . dstAddr ,

ethernet , e the rne t . dstAddr , drop ] ,
i n v a l i d : [ ipv4 . t t l ] } ) ] ,

drop : [ (
pre : {

va l i d : [ e thernet , e the rne t . dstAddr ] ,
i n v a l i d : [ ] } ,

post : {
va l i d : [ drop , ethernet , e the rne t . dstAddr ] ,
i n v a l i d : [ ] } ) ] ,

Figure 11: Conditions of the actions

After the actions, it processes the table t . It has one key, so first, it sets its
header ethernet and field ethernet .dstAddr to Valid, as a precondition, because the
program would like to read them – and of course, as a postcondition too, because
that shows the actual condition. Then it checks and merges its conditions and the
conditions of the actions together. Therefore there will be three pairs of conditions
– because of the three actions. The precondition of action ipv4 create1 matches
with the newly defined precondition of the table, therefore it can create the merged
pre- and postcondition, where the condition of the action is the stronger one – in
this case there is no conflict, so the condition pair of the action will be one of the
table conditions.

The process of the other actions is similar. Their preconditions fit the precon-
dition of the table, therefore it can merge their conditions. The conditions of the
ingress MyIngress are the same as the table because it just simply calls it. The
conditions of the table and ingress pipeline can be seen in Figure 12.

Parser/Deparser Analyzer The specification of the program is calculated from
the parser and deparser. Both the parser and the deparser are really simple. None
of them contains any branch, therefore there is only one possible precondition and
two postconditions – Figure 13.
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1 . [ (
2 . pre : {
3 . v a l i d : [ e thernet , e the rne t . dstAddr , ipv4 ] ,
4 . i n v a l i d : [ ] } ,
5 . post : {
6 . v a l i d : [ ipv4 , ethernet , e the rne t . dstAddr ] ,
7 . i n v a l i d : [ ipv4 . t t l , ipv4 . srcAddr , ipv4 . dstAddr , drop ] } ) , (
8 . pre : {
9 . v a l i d : [ e thernet , e the rne t . dstAddr ] ,
10 . i n v a l i d : [ ] } ,
11 . post : {
12 . v a l i d : [ ipv4 , ipv4 . srcAddr , ipv4 . dstAddr ,
13 . ethernet , e the rne t . dstAddr ] ,
14 . i n v a l i d : [ ipv4 . t t l , drop ] } ) , (
15 . pre : {
16 . v a l i d : [ e thernet , e the rne t . dstAddr ] ,
17 . i n v a l i d : [ ] } ,
18 . post : {
19 . v a l i d : [ e thernet , e the rne t . dstAddr , drop ] ,
20 . i n v a l i d : [ ] } ) ]

Figure 12: Conditions of table t and ingress pipeline MyIngress

The precondition describes the case when the parser extracts only the ethernet
header, therefore this header and all of its fields will be valid, and the other header
ipv4 and its fields will be invalid.

There can be two postconditions. One, which is defined by the deparser, where
the packet is not dropped and both of the headers ethernet and ipv4 and all of
their fields are valid – because the program will use their value for the new packet.
The other case is when the packet is dropped.

Pre : [{
Valid : [ e thernet , e the rne t . a l l F i e l d s ( ) ] ,
InVal id : [ ipv4 , ipv4 . a l l F i e l d s ( ) , drop ] } ]

Post : [{
Valid : [ e thernet , e the rne t . a l l F i e l d s ( ) , ipv4 , ipv4 . a l l F i e l d s ( ) ] ,
InVal id : [ drop ] } ,

{ Valid : [ drop ] , InVal id : [ ] } ]

Figure 13: Specification of the program

Final Checker There is only one main precondition, therefore it needs to check
if the possible actual preconditions – the preconditions of the ingress pipeline
MyIngress – fit, then their postcondition fits one of the main postconditions.

The main precondition assures only valid ethernet header information, although
the first condition pair – rows 2-7. Figure 12 – of the actual condition needs a valid
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ipv4 header too. The first part of the formula is false, therefore the method can
detect an error, which shows that this execution path of the program will not be
able to execute well, because of the invalid ipv4 header.

In the second condition pair – rows 8-14. Figure 12–, the precondition fit to the
main precondition, therefore it needs to check if the actual postcondition assures
one of the main postconditions. The actual condition describes an execution when
the packet was not dropped, therefore only the first main postcondition can be
good, but we can see that in the actual postcondition the ipv4 .ttl field is invalid,
but the main postcondition needs a valid one. It is another error case, which is
detected and it shows the case when the execution is correct, but the final header
information which is calculated does not match with the expected result by the
deparser.

In the third condition pair – rows 15-20. Figure 12, the preconditions fit, and
this is the case when the packet was dropped during the execution, therefore its
postcondition will ensure the second main postcondition. This path shows a correct
execution path.

6 Evaluation

We created a prototype for the Condition Calculator. The critical part of the
implementation is the calls of the tables because this is the step when more and
more condition states can be defined. Therefore Figure 14 shows the runtime based
on different numbers of table calls. During the measurement only one table was
used, which has 5 action calls - one NoAction, which is like a skip program; one
drop action, which only signs the package to drop it; and three others, all of them
contain sequences of simple assignments.

Figure 14: Runtime based on different number of table calls

In the graph of Figure 14, the vertical information is the number of table appli-
cations, and the horizontal data is the runtime in milliseconds. We can see three
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different lines because the implementation of the calculator is separated into two
parts: a pre-calculator, which only prepares the obtained information; and the main
condition calculator, which uses the prepared data to create the conditions. In the
graph, the three different lines show the runtime of the pre-calculator (blue), the
main calculator (orange), and the full time of them (grey). This graph shows the
worst cases when all of the calculated conditions are different, therefore the number
of the conditions is equal to the number of the actions to the power of the number
of the table applications i.e. in our table there were 5 actions, and when we applied
this table five times, then we could get 3125 conditions. However, we can see that,
when we used 10 table applications, the runtime was only 13 seconds.

This presented data only give the worst runtime of this calculation, but when
we use a normal P4 code then most of the conditions are the same, do the program
will not work with this number of conditions.

7 Summary

In this paper, we introduced a formal method to detect errors in P4 programs by
checking the pre- and postconditions. It has three main analyzers: the Parser/De-
parser Analyzer, the Pipeline Analyzer, and the Final Checker. The method only
works with the P4 source, therefore it extracts the specification of the program from
the parser and deparser of it – by the Parser/Deparser Analyzer. The Pipeline An-
alyzer checks the definition of the pipeline, and calculated condition pairs for the
different components of it – actions, match-action tables, and control functions. It
can detect four different types of errors, which can be caused by the incorrect usage
of invalid headers and uninitialized fields or components, which do not match.

Future Work The method is a base of a full solution for P4 verification. Until
this goal, we need to extend the checked subset of the P4 language, therefore we
will be able to work with more programs.
When both of our approach is ready – this, component-based and our previous
idea [13] –, then it could be an interesting work to check which one is better in the
specified error detections, and combine them for a more optimized solution.
P4 programs can use different architectures. In this approach, we only showed the
Protocol Independent Switch Architecture, which use a single pipeline, but there
are other architecture models – for example Portable Switch Architecture [3] which
can work with more pipelines. Our solution will be able to used as a part of a
research, which checks if a P4 program is correct for a given architecture, while
checking the correctness of a pipeline.
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