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An Efficient Sampling Algorithm

for Difficult Tree Pairs∗

Sean Clearya and Roland Maiob

Abstract

It is an open question whether there exists a polynomial-time algorithm
for computing the rotation distances between pairs of extended ordered binary
trees. The problem of computing the rotation distance between an arbitrary
pair of trees, (S, T ), can be efficiently reduced to the problem of computing
the rotation distance between a difficult pair of trees (S′, T ′), where there
is no known first step which is guaranteed to be the beginning of a minimal
length path. Of interest, therefore, is how to sample such difficult pairs of
trees of a fixed size. We show that it is possible to do so efficiently, and
present such an algorithm that runs in time O(n4).

Keywords: rotation distances, associahedra, rooted binary trees, sampling

1 Introduction

Trees are a fundamental data structure with wide applications ranging from effi-
cient search (such as binary search trees) to modeling biological processes (such as
phylogenetic trees). Given pairs of trees, there are numerous ways of calculating
metrics of interest between trees. These metrics measure of the amount of com-
monality and difference, which depend on the class of trees considered and what
features of the trees are regarded as important to have in common.

Trees arise in data storage and searching as efficient structures. When there is
a natural order on leaves, we have binary search trees which underlie many storage
and searching systems. See Knuth [10] for background and important foundational
notions and algorithms. Binary search trees and their generalizations underlie
almost all modern file-storage and data-storage systems. To ensure good average-
time search performance of log(n), it is necessary to have reasonably balanced trees
and rotations are a quick, local change which can be used to keep trees close to
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Figure 1: An example of a left rotation in an ordered tree. We rotate leftward at
node 5, with the rotation promoting node 7 to the position of its former parent.
Node 5 is demoted to become a left child of node 7 and node 7 is promoted to be
the right child of node 1. Node 6 changes from being the left child of 7 to the right
child of 5.

balanced during sequences of insertions and deletions. Furthermore, rooted binary
trees are in direct correspondence with triangulations of polygons with a marked
edge, and as described by Hanke, Ottmann, and Schuierer [9], such tree metrics
apply to edge-flipping conversions between triangulations of planar regions.

One widely-considered tree distance metric on trees with a natural left-to-right
order on leaves is that of the rotation distance between a pair of extended ordered
binary trees. A rotation at a node is a simple local transformation which does not
affect the order, with an example shown in Figure 1. Rotation distance between
trees is the length of the shortest possible sequence of rotations to accomplish the
transformation between trees. There are no known polynomial-time algorithms
for computing rotation distance. Culik and Wood [7] originally described rotation
distance, and ground-breaking work of Sleator, Tarjan and Thurston [13] used
the correspondence between trees with n internal nodes and triangulations of the
marked regular n + 2-gon to show that if there is a common edge between the
two triangulations then any shortest path does not flip this edge. Such a common
edge thus breaks the rotation distance problem into two smaller sub-problems.
Furthermore, they showed that if it is possible to flip an edge of either polygon
to obtain a common edge, then there is a shortest path which begins by doing
so. We call edges which are not common but which can be flipped to become a
common edge one-off edges, as they are one move away from being common edges
themselves. Cleary and St. John [6] used these reduction rules to show that the
rotation distance problem is fixed parameter tractable.

We call a pair of trees with no common edges and no edges which can be
immediately flipped to create a common edge a difficult tree pair. The above
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reductions transform the problem of computing the rotation distance on a pair of
trees drawn from all possible pairs to a pair of trees drawn from the set of all such
difficult tree pairs. A common edge, arising either immediately or from performing
a single flip to change a one-off edge to a common edge, then naturally splits the
tree pair into a pair of smaller tree pairs, as explained in Sleator, Tarjan, and
Thurston [13]. The kernel of the difficult of the rotation distance problem at this
point is to find distances between difficult tree pairs.

To understand how effective different approximation and partial algorithms are
at evaluating and estimating rotation distance, it would be useful to sample difficult
tree pairs. It is possible to find examples of difficult tree pairs by picking a tree
pair of large size at random, and then performing all possible reductions and one-off
moves, splitting the problem into a collection of smaller subproblems, until either
the trees are identical (extremely unlikely) or until a collection of difficult tree pairs
is obtained. But such a procedure is not only time-consuming, it is not possible to
tell in advance how many reductions there will be and what the resulting sizes of
the smaller remaining difficult piece pairs will be. Thus there is no control on the
resulting size of the difficult tree pairs produced. In general (see Cleary, Rechnitzer
and Wong [2]) there are a sizable number of common edges and one-off edges,
resulting on average about at least a 10% reduction in the size of a randomly selected
tree pair to a largest difficult remaining tree pair. It is not difficult to construct
specific examples of specified size of difficult tree pairs- examples of Dehornoy [8],
Pournin [11], and Cleary and Maio [3] are families of difficult pairs but in each case
of a restricted type. In many of these very specific cases, analysis to that family of
instances can give coincident upper and lower bounds on rotation distance, giving
an exact calculation. But these families are very sparse in the set of all difficult tree
pairs. The set of all difficult tree pairs appears to grow exponentially with size, but
at a slower expontial growth rate than the set of all tree pairs, per work of Cleary
and Maio [4] suggesting that the fraction of all tree pairs decreases exponentially
at a rate of about 0.77n, with already ratio of less than 1 in a billion tree pairs of
size 70 being difficult and the fraction dropping with further increases of size.

Difficult tree pairs lie at the kernel of a number of questions of interest. Because
the rotation distance problem frequently splits into smaller subproblems, the es-
sential difficulties are contained in the set of difficult tree pairs. Difficult tree pairs
can be used to test estimation algorithms for rotation distance, to find estimates
for typical rotation distance between tree pairs selected at random, and to look for
difficult pathological behavior for rotation distance paths.

This motivates studying difficult tree pairs in their own right. We describe
below an efficient algorithm for sampling difficult tree pairs of a specified size. This
sampling is not uniform across all difficult tree pairs of a prescribed size but does
have wide coverage of such pairs.

The algorithm we describe can be seen as a variation on Remy’s algorithm [12]
for efficiently generating rooted ordered trees uniformly at random, but instead of
working on growing the size of a single tree, we grow a pair of trees while applying
a filtering criterion. Unlike Remy’s algorithm, the difficult pairs are not sampled
uniformly at random but having an efficient (polynomial-time) means of generating
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pairs is useful for understanding rotation distance problem instances better and for
testing the performance of new algorithms. Computational experiments show that
the distribution of selected tree pairs are not uniformly random but there does seem
to be wide dispersion, with relatively broad coverage of difficult tree pairs.

2 Background

An extended ordered binary tree is a rooted binary tree where every node has exactly
0 or 2 children and whose leaves are labelled starting with 0 in their order defined
by a pre-order traversal from the root. The label of a leaf node � is denoted label(�).
The size of an extended ordered binary tree T , denoted |T |, is the number of internal
nodes T contains. The set of all nodes in T is denoted nodes(T ). In the following
tree will refer to an extended ordered binary tree and S and T will be trees of the
same size.

A rotation at a node ν in a tree is a local operation which promotes an internal
node ν to the position of its parent μ, demotes μ to one of ν’s children, and makes
one of ν’s children a child of μ, illustrated in Figure 1 where the rotation is leftward
at node 7 going from the left tree to the right tree. The inverse operation of going
from the right tree to the left tree is a rightward rotation at node 5. We will denote
the partial function that returns the parent of a node by π : nodes(T ) �→ nodes(T ),
with π(root(T )) is undefined. We adopt the convention that the statement “rotate
at a node ν”, denoted rotate(ν), means to perform that rotation which promotes ν
to the position of its parent. Whether that is a right or left rotation depends upon
whether ν is a left or right child of its parent. For a tree of size n there are n − 1
possible rotations, one for each internal node except the root.

Given a pair of trees (S, T ) of the same size, it is possible to transform one
into the other by some sequences of rotations. The minimum length of any such
sequence defines the rotation distance between S and T , which we denote d(S, T ).

The interval of a node ν, interval(ν), is the pair (α, β) where α is the label of the
least-labelled leaf in the tree rooted at ν and β is the label of the greatest-labelled
leaf in the tree rooted at ν. The label α is called the lower bound of the interval of
ν and is denoted �interval(ν)�. Similarly, the label β is called the upper bound of
the interval of ν and is denoted �interval(ν) . If ν is a leaf, then its lower bound is
the same as its upper bound and is defined to be its label. If ν is an internal node,
then its lower bound is the lower bound of its left child, and its upper bound is the
upper bound of its right child; formally

interval(ν) =

{
(label(ν), label(ν)) if ν is a leaf

(�interval(left(ν))�, �interval(right(ν)) ) otherwise

The intervals of a tree T , denoted intervals(T ), is the set of all intervals of the
internal nodes of T .

The labels α and β are related to each other by the size of the subtree rooted
at ν in the following way:
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Proposition 1. Let ν be an internal node of T , and N the subtree rooted at ν,
and (α, β) = interval(ν), then β = α+ |N |.
Proof. Recall that N has |N | + 1 leaves. It is a property of pre-order traversal
that once the traversal visits a node it will visit the entire subtree rooted at that
node before it visits any other part of the tree. Consequently, when the pre-order
traversal reaches ν, the next |N |+ 1 leaf nodes that will be visited will be the leaf
nodes of N . Thus, the greatest label any leaf in N can have is α + |N | and this
must be attained by the last leaf that is visited in N .

In addition to changing one tree into another, a rotation in a tree T at a node
ν has the effect of replacing one of the intervals of the tree by a new one. This
new interval is uniquely determined by T and ν and is denoted 1-interval(ν). The
1-interval(ν) can be defined in terms of the intervals of ν, the parent of ν, and the
children of ν. If ν is the left child of its parent, then the lower bound of 1-interval(ν)
is the lower bound of the right child of ν and the upper bound of 1-interval(ν) is
the upper bound of the parent of ν. If ν is the right child of its parent, then the
lower bound of 1-interval(ν) is the lower bound of its parent, and the upper bound
of 1-interval(ν) is the upper bound of the left child of ν. Formally

1-interval(ν) =

{
(�interval(t)�, �interval(π(ν)) ) if ν = left(π(ν))

(�interval(π(ν))�, �interval(s) ) otherwise

where s = left(ν) and t = right(ν).
The 1-intervals(T ) is the set of all n − 1 intervals that can be obtained by

rotating some node in T .
Trees correspond naturally to the marked triangulations of a polygon, and we

denote the corresponding triangulation by !(T ). The edges of !(T ) correspond
to the intervals(T ).

While the reduction rules were first developed from the perspective of triangu-
lations of the polygon, they may be formulated from the tree perspective in terms
of intervals and rotations. A common edge between triangulations corresponds to
a common interval occuring in the intervals of both trees. A one-off edge between
triangulations corresponds to a common interval that can be obtained by rotating
at one of the nodes in S or T .

The binary word of T , word(T ), is obtained by beginning with the empty string,
traversing T in pre-order and appending at each node a ‘1’ if the node is an internal
node and a ‘0’ otherwise. Thus the symbol at the ith index in word(T ) is determined
by the ith node visited in T by a pre-order traversal. This determines a mapping
from symbols in word(T ) to nodes(T ).

Definition 1. Let T be an extended ordered binary tree, and let ν be the i-th node
visited in a pre-order traversal of T . The symbol of ν in word(T ), denoted symT(ν),
is defined to be the the symbol of word(T ) at index i.

The following property of word(T ) gives one method for computing the intervals
of T .
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Proposition 2. Let � be a leaf node of T , then the label of � is given by the number
of ‘0’s that precede symT(l).

Proof. Suppose the label of � is α. By the definition of label, � is the (α + 1)st
leaf node visited in the preorder traversal of T . In computing word(T ), therefore,
exactly α ‘0’s must have been appended before symT(l) is appended.

Proposition 3. Let T be an extended ordered binary tree, ν an internal node of
T , N the subtree of T rooted at ν, and (α, β) = interval(ν). Then α is given by the
number of 0’s that precede symT(ν), and β = α+ |N |.
Proof. To prove α is given by the number of 0’s that precede symT(ν) it suffices,
by Proposition 2, to show that the symbol of the leaf node, �, with label α is the
first 0 that proceeds symT(ν). Suppose this is not the case, then there is at least
one 0 that proceeds symT(ν) and precedes symT(l). Then there is some leaf node
k in the subtree rooted at ν that is visited after ν and before �. So the label of k is
at most α− 1, but this contradicts the assumption that � is the least labelled leaf.
Finally, from Proposition 1 it follows that β = α+ |N |.

We let ◦ denote string concatenation and we let ν be a node of a tree. We define
the functions left(ν) and right(ν) to return the left or right child or ν respectively.
A recursive definition for word(ν) can then be given as follows

word(ν) =

{
1 ◦ word(left(ν)) ◦ word(right(ν)) if ν is an internal node

0 otherwise

With this definition word(T ) = word(r) where r is the root of T .
Remy’s algorithm [12] is a method for sampling trees of a fixed size uniformly

at random by growing a tree larger at each stage ensuring that each possible tree
of that size is equally likely to be generated. The algorithm begins with a tree of
size 1 and iteratively grows the tree until a tree of the desired size is obtained. On
each iteration, one of the internal or external nodes, say ν, of the current tree, say
T , is selected uniformly at random. Then a new node, μ, is created. The new node
μ takes the place of ν in the tree, and ν is set as the left or right child of μ with
equal probability. We say that the resulting tree is obtained from T by growing
left (or right) at ν.

If a tree S may be grown in some way by an iteration of Remy’s algorithm to
obtain a tree T , then we call T a growth neighbor of S and denote the set of all
growth neighbors of S by growthNeighbors(S).

On an iteration of Remy’s algorithm, if an external node is chosen to be grown,
then growing left or right will result in the same tree. Thus, an upper bound on
the number of growth neighbors a tree of size n may have is 3n+ 1.

3 Difficult Pair Sampling Algorithm

The Difficult Pair Sampling algorithm, DPS, begins by randomly choosing one of
the 4 difficult pairs of trees of size 4. We call these difficult pairs primitive because
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there are no difficult pairs of trees that are smaller. The algorithm then iteratively
grows the pair of trees in size by 1 until a pair of the desired size is obtained. On
each iteration, for the current pair of trees S and T , DPS finds all difficult pairs of
trees (U , V ) such that U is a growth neighbor of S and V is a growth neighbor of
V and randomly selects one of these pairs to be the next S and T .

DPS(n)

1 S, T = randomPrimitiveDifficultPair()
2 for i = 5 to n
3 choices = ∅
4 for U in growthNeighbors(S)
5 for V in growthNeighbors(T )
6 if isDifficultPair(U, V )
7 choices.add((U, V ))
8 S, T = choices.randomElement()
9 return S, T

What is not obvious about DPS is that for an arbitrary difficult pair (S, T ), it is
always possible to grow S and T into a difficult pair (U, V ). We will show that this
is the case by examining a particular growth neighbor. Generally there are many
additional growth neighbors but the existence of a single one suffices for proving
the correctness of the algorithm.

Definition 2. Let T be an extended ordered binary tree of size n, and ω be the
internal node of T whose right child is the leaf with label n. The extended ordered
binary tree of size n+ 1, obtained by growing T at ω left, will be denoted σ(T ).

We will show that given a difficult pair (S, T ), the pair of trees (σ(S), σ(T )) is
also a difficult pair. The proof that (σ(S), σ(T )) is a hard pair will rest on the rela-
tion between intervals(T ) to intervals(σ(T )) and 1-intervals(T ) to 1-intervals(σ(T )).

Relating intervals(T ) to intervals(σ(T )) and 1-intervals(T ) to 1-intervals(σ(T ))
will require relating word(T ) to word(σ(T )) which we will do next.

Lemma 1. Let T be an extended ordered binary tree of size n, then word(T ) = ΛΩ
and word(σ(T )) = Λ1Ω0.

Proof. Let ω be the parent of the leaf node with label n in T , this implies that ω,
and all of its ancestors are either the root or the right child of their parent. From
the definition of word it follows that word(T ) is of the form ΛΩ where Ω = word(ω).

When T is grown left at ω, the new node, φ, will take ω as its left child and
become the right child of ω’s former parent. Consequently, word(σ(T )) will be ΛΦ
where Φ = word(φ).

word(φ) = 1 ◦ word(left(φ)) ◦ word(right(φ))
= 1 ◦ word(ω) ◦ 0

Φ = 1Ω0
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Figure 2: Growing a node and preserving the difficulty of the pair.
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There is a natural way in which the nodes in T correspond to the nodes in σ(T ).
The intuition for this is shown in Figure 2. This correspondence can be formalized
in terms of the relation between word(T ) and word(σ(T )).

Definition 3. Let T be an extended ordered binary tree. The natural growth injec-
tion of the nodes of T to the nodes of σ(T ), G : nodes(T ) �→ nodes(σ(T )) is defined
as

G(ν) = sym-1
σ(T)(word(σ(T ))(i+ 1{|Λ| < i}))

where i is the index of symT (ν) and 1{. . .} is the indicator function.

There are several properties of G which will be critical to proving our claim that
DPS can always grow a difficult pair (S, T ) into another difficult pair (U, V ). The
first that we will examine relates the interval of a node, ν, in T to the interval of
G(ν) in σ(T ).

Lemma 2. Let T be an extended ordered binary tree of size n, ω be the node of
T whose right child is the leaf with label n, ν be any node of T that is not ω and
(α, β) = interval(ν). Then interval(G(ν)) = (α, β + 1{β = n}).

Proof. Let (γ, n) = interval(ω). By Lemma 1, we have word(T ) = ΛΩ and
word(σ(T )) = Λ1Ω0. Now we partition nodes(T )− {ω} into three sets:

1. {ν : (α, β) = interval(ν), α < γ, β < n} all nodes that have an interval with a
lower bound less than the lower bound of ω and with an upper bound that is
less than n.

2. {ν : (α, β) = interval(ν), α < γ, β = n} all nodes that have an interval with a
lower bound less than the lower bound of ω and with an upper bound equal
to n.

3. {ν : (α, β) = interval(ν), γ ≤ α} all nodes that have an interval with a lower
bound greater than or equal to the lower bound of ω.

We consider the first case. Let N be the subtree rooted at ν, a be the leaf with
label α, b be the leaf with label β and g be the leaf with label γ. Since α < γ,
the symbol of a in word(T ) must precede the symbol of g in word(T ) and therefore
symT (a) ∈ Λ and symT (ν) ∈ Λ. By the definition of G it follows that the index
of symσ(T )(G(ν)) is the same as the index of symT (ν) and so symσ(T )(G(ν)) ∈ Λ.
Therefore, by Proposition 2 the lower bound of G(ν) must be α. Since β < n it
follows β < γ, otherwise g is in N , but this would imply that ω is also in N and so
β = n, which is impossible. Consequently the symbol of b in word(T ) must precede
the symbol of g in word(T ) and therefore symT (b) ∈ Λ and symσ(T )(G(b)) ∈ Λ.
This implies that word(ν) = word(G(ν)) and so the size of the subtree rooted at
G(ν) is the same as the size of N . Applying Theorem 3 it follows that the upper
bound of G(ν) is β. Therefore interval(G(ν)) = (α, β) = (α, β + 1{β = n}).

Now we consider the second case. Let N be the subtree rooted at ν, a be the
leaf with label α, b be the leaf with label β and g be the leaf with label γ. Since
α < γ, the symbol of a in word(T ) must precede the symbol of g in word(T ) and so
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symT (a) ∈ Λ and symT (ν) ∈ Λ. By the definition of G, the index of symσ(T )(G(ν))
is the same as the index of symT (ν) and by Proposition 2 the lower bound of G(ν)
is α. Since β = n, ω must be contained in the subtree rooted at ν. Therefore, when
T is grown left at ω, the subtree rooted at G(ν) will be larger in size by one than
N . Applying Theorem 3 it follows that the upper bound of G(ν) is β + 1. And so
interval(G(ν)) = (α, β + 1) = (α, β + 1{β = n}).

Finally, we consider the third case. Let N be the subtree rooted at ν. Since
γ ≤ α, ν is a descendant of ω. Therefore word(ν) is a proper substring of Ω. We
observe that for |Λ| < i ≤ |word(T )|, we have word(T )(i) = word(σ(T ))(i + 1),
combined with the definition of G it follows that word(ν) = word(G(ν)). So the
size of the subtree rooted at G(ν) is the same as the size of N . Since the number
of ‘0’s which precede symσ(T )(G(ν)) is the same as the number of ‘0’s that precede
symT (ν) it follows that the lower bound of G(ν) is α. Therefore interval(G(ν)) =
(α, β) = (α, β + 1{β = n}).

The growth injection G also captures several of the node-to-node relationships of
T which are preserved in σ(T ): G preserves the relation between parents and their
left children, G preserves the relation between parents and their right children,
except for the parent of the node whose right child is the leaf labelled n, and
taken together, a consequence of the preceding two properties is that G preserves
the relation between parents and children except for the node whose right child
is the leaf labelled n. We will next state and prove these relationships formally
because we will exploit them in proving the relationship between 1-intervals(T )
and 1-intervals(σ(T )).

Lemma 3. Let T be an extended ordered binary tree of size n and ω be the internal
node of T whose right child is the leaf with label n. For any internal node ν ∈ T ,
the image of the left child of ν under G is the left child of the image of ν under G,
that is, G(left(ν)) = left(G(ν)).

Proof. It will suffice to show that the index of the symbol of G(left(ν)) in the word
of σ(T ) is the same as the index of the symbol of left(G(ν)) in the word of σ(T ).
Let i be the index of symT (ν) and consider two cases as to whether |Λ| < i or not.

Case I: |Λ| < i: the index of symT (left(ν)) = i + 1 and so the index of
symσ(T )(G(left(ν))) = i + 2. By definition, the index of symσ(T )(G(ν)) = i + 1
giving index symσ(T )(left(G(ν))) = i+ 2.

Case II: |Λ| ≥ i:, we must verify that i+ 1 ≤ |Λ|. Since ν is an internal node,
its symbol must be a ‘1’ and since the suffix of Λ is the word of the left child of the
parent of ω, the last symbol in Λ must be a ‘0’ and so i ≤ |Λ| − 1 which implies
i+ 1 ≤ |Λ|. Now the index of symT (left(ν)) = i+ 1. Since i+ 1 < |Λ| the index of
symσ(T )(G(left(ν))) = i + 1. By definition, the index of symσ(T )(G(ν)) = i and so
the index of symσ(T )(left(G(ν))) = i+ 1.

Lemma 4. Let T be an extended ordered binary tree of size n and ω be the internal
node of T whose right child is the leaf with label n. For any internal node ν ∈ T ,
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except for π(ω), the image of the right child of ν under G is the right child of the
image of ν under G, that is G(right(ν)) = right(G(ν)).

Proof. It will suffice to show that the index of the symbol of G(right(ν)) in the
word of σ(T ) is the same as the index of the symbol of right(G(ν)) in the word of
σ(T ). Let i be the index of symT (ν) and consider two cases as to whether |Λ| < i
or not.

Case I: |Λ| < i: the index of symT (right(ν)) = i + |word(left(ν))| + 1 and
so the index of symσ(T )(G(right(ν))) = i + |word(left(ν))| + 2. By definition, the
index of symσ(T )(G(ν)) = i + 1 and so the index of symσ(T )(right(G(ν))) = i +
|word(left(G(ν)))| + 2. Observe that the upper bound of the interval of left(ν)
must be less than n since it is the left child of its parent. Applying Lemmas 2
and 3 it follows that interval(left(ν)) = interval(G(left(ν))) = interval(left(G(ν))).
Therefore the size of the subtree rooted at left(ν) is the same as the size of the
subtree rooted at left(G(ν)) and so |word(left(ν))| = |word(left(G(ν)))|

Case II: |Λ| ≥ i: we must verify that i + |word(left(ν))| + 1 ≤ |Λ|. But this
is clearly true since the only case in which |Λ| < i + |word(left(ν))| + 1 is when
ν = π(ω), but we have excluded π(ω) from consideration. Observe that the index of
symT (right(ν)) = i+ |word(left(ν))|+1 and so the index of symσ(T )(G(right(ν))) =
i + |word(left(ν))| + 1. By definition, the index of symσ(T )(G(ν)) = i and so the
index of symσ(T )(right(G(ν))) = i + |word(left(G(ν)))| + 1. Since left(ν) is a left
child the upper bound of its interval must be less than n. Applying lemmas 2 and
3 it follows that interval(left(ν)) = interval(G(left(ν))) = interval(left(G(ν))). This
implies that the size of the subtree rooted at left(ν) is the same as the size of the
subtree rooted at left(G(ν)) and so |word(left(ν))| = |word(left(G(ν)))|.

Together Lemma 3 and Lemma 4 show the preserved parent structure.

Corollary 1. Let T be an extended ordered binary tree of size n and ω be the
internal node of T whose right child is the leaf with label n. For any node ν ∈
nodes(T )−{ω}, the image of the parent of ν under G is the parent of the image of
ν under G, that is, G(π(ν)) = π(G(ν)).

The next lemma will relate intervals(T ) to intervals(σ(T )).

Lemma 5. Let T be an extended ordered binary tree of size n and ω be the internal
node of T whose right child is the leaf with label n. Then the intervals of σ(T ) are
related to the intervals of T by

intervals(σ(T )) ={(α, β + 1{β = n}) : (α, β) ∈ intervals(T )} ∪ {interval(ω)}. (1)

Proof. Let (γ, n) = interval(ω). By Lemma 2 we have the intervals for the internal
nodes of σ(T ) that are the image under G of some node in T , except for ω. This gives
us n−1 intervals of σ(T ) and we have only to consider the interval of G(ω) and the
interval of π(G(ω)). By Lemma 1 the number of ‘0’s which precede symσ(T )(G(ω))
is the same as the number of ‘0’s which precede symσ(T )(π(G(ω))) which is the
same as the number of ‘0’s which precede symT (ω) and so the intervals of G(ω) and
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π(G(ω)) have the same lower bound, namely γ, which is the lower bound of ω. By
construction, the subtree rooted at G(ω) has the same size as the subtree rooted
at ω. Applying Proposition 1 it follows that interval(G(ω)) = interval(ω). Also by
construction, the subtree rooted at π(G(ω)) is greater in size by 1 than the subtree
rooted at ω. Applying Proposition 1 again yields interval(π(G(ω))) = (γ, n+ 1) =
(α, β + 1{β = n}).

With the relationship between intervals(σ(T )) and intervals(T ) proven, we can
state and prove the relationship between 1-intervals(σ(T )) and 1-intervals(T ). Our
proof strategy will be to determine for each internal node of T , ν, the local structure
that determines the 1-interval(ν) in T . Then we will determine how that local
structure maps to the local structure of G(ν) in σ(T ) and use this to compute
1-interval(G(ν)).

Lemma 6. Let T be an extended ordered binary tree of size n, ω the internal node
of T whose right child is the leaf with label n, and φ the internal node of σ(T ) that
is the parent of G(ω). Then the 1-intervals of σ(T ) are related to the 1-intervals of
T by

1-intervals(σ(T )) ={(α, β + 1{β = n}) : (α, β) ∈ Θ}
∪{1-interval(left(ω)), (n, n+ 1), 1-interval(φ)}

where Θ = 1-intervals(T )− {1-interval(ω), 1-interval(left(ω))}.

Proof. Let (γ, n) = interval(ω) and apply lemma 1 to obtain word(T ) = ΛΩ and
word(σ(T )) = Λ1Ω0. Now we partition nodes(T ) into 6 sets:

1. {ν : (δ, n) = interval(ν), ν /∈ {ω, root(T )}} every node, excluding the root and
ω, whose interval has an upperbound of n.

2. {ν : (δ, β) = interval(π(ν)), β < n, ν = left(π(ν))} every node whose parent’s
interval has an upperbound less than n and that is a left child of its parent.

3. {ν : (α, δ) = interval(π(ν)), δ < n, ν = right(π(ν))} every node whose parent’s
interval has an upperbound less than n and that is a right child of its parent.

4. {ν : (δ, n) = interval(π(ν)), (κ, n) 
= interval(ν), ν 
= left(ω)} every node, ν,
excluding the left child of ω, such that the upper bound of the interval of ν
is not n and the upper bound of the interval of ν’s parent is n.

5. {ω} the singleton set containing ω.

6. {left(ω)} the singleton set containing the left child of ω.

We proceed analyzing these six sets:
Case 1: Because we have excluded the root, the parent of ν is a node in T and

its right child must be ν. Since the 1-interval(ν) = (α, β) is obtained by taking



An Efficient Sampling Algorithm for Difficult Tree Pairs 641

the lower bound of ν’s parent and the upper bound of the left child of ν it follows
that interval(π(ν)) = (α, n) and interval(left(ν)) = (δ, β). Since we have excluded
ω, α, β and δ must be less than γ. Applying Lemma 2, Lemma 3 and Corol-
lary 1 we have interval(G(ν)) = (δ, n + 1), interval(G(π(ν))) = interval(π(G(ν))) =
(α, n + 1) and interval(G(left(ν))) = interval(left(G(ν))) = (δ, β). It follows that
1-interval(G(ν)) = (α, β) = (α, β + 1{β = n}) = 1-interval(ν).

Case 2: interval(ν) = (δ, ε) and interval(right(ν)) = (α, ε) for some ε and α.
Since β < n, applying Lemma 2, Lemma 4 and Corollary 1 yields interval(G(ν)) =
interval(ν), as well as interval(G(π(ν))) = interval(π(G(ν))) and also
interval(right(G(ν))) = interval(right(ν)). Computing 1-interval of G(ν) yields
1-interval(G(ν)) = (α, β) = (α, β + 1{β = n}) = 1-interval(ν).

Case 3: interval(ν) = (ε, δ) and interval(left(ν)) = (ε, β) for some ε and β.
Since δ < n, applying Lemma 2, Lemma 3 and Corollary 1 yields interval(G(ν)) =
interval(ν), interval(G(π(ν))) = interval(π(ν)), and also that interval(left(G(ν))) =
interval(left(ν)). Therefore, 1-interval(G(ν)) = (α, β) = (α, β + 1{β = n}) =
1-interval(ν).

Case 4: Because the upperbound of ν is not n, it follows ν is the left child
of its parent, and so (δ, ε) = interval(ν) and (α, ε) = interval(right(ν)) for some
ε and α such that ε < n. Consequently 1-interval(ν) = (α, n) for some α and
interval(right(ν)) = (α, ε). Applying Lemma 2, Lemma 4 and Corollary 1 we have
that interval(G(ν)) = interval(ν), interval(π(G(ν))) = (δ, n+ 1) and
interval(right(G(ν))) = interval(right(ν)) therefore, 1-interval(G(ν)) = (α, n+ 1) =
(α, β + 1{β = n}).

Case 5: interval(G(ω)) = (γ, n), interval(π(G(ω))) = (γ, n + 1) and the right
child of G(ω) is the leaf with label n. Therefore, 1-interval(G(ω)) = (n, n+ 1).

Case 6: By definition, we have π(left(ω)) = ω and so interval(π(left(ω))) =
interval(ω) = (γ, n). Because the right child of ω is the leaf with label n it follows
that interval(left(ω)) = (γ, n−1). Therefore interval(right(left(ω))) = (α, n−1) for
some α and 1-interval(left(ω)) = (α, n). By Lemma 2 we have interval(G(left(ω))) =
interval(left(ω)). By Lemma 5 and Corollary 1 we have that interval(G(ω)) =
interval(ω). By Lemmas 2 and Lemma 3, we have interval(right(G(left(ω)))) =
interval(right(left(ω))), and thus 1-interval(G(left(ω))) = 1-interval(left(ω)).

The preceding case analysis computes the 1-interval for every internal node of
σ(T ) that is the image under G of some node ν in T . In order to complete the
1-intervals(σ(T )) and the proof, we add 1-interval(φ).

With these substitution rules for obtaining the intervals and 1-intervals of a
tree σ(T ) from the intervals and 1-intervals of T , we can now proceed to show
that if (S, T ) is a difficult pair, then so too is (σ(S), σ(T )). We will do so by first
showing that the pair (σ(S), σ(T )) do not have a common interval between them
and secondly that they have no one-off intervals between them either.

Lemma 7. Let (S, T ) be a difficult pair of extended ordered binary trees of size n,
let ωS be the internal node of S whose right child is the leaf with label n, and let
ωT be the internal node of T whose right child is the leaf with label n. Then the
pair of trees (σ(S), σ(T )) do not have an interval in common.
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Proof. Assume, to the contrary, that the pair (σ(S), σ(T )) have an interval in
common. Then some interval, call it t, in intervals(σ(T )) is also in intervals(σ(S)).
We consider the possible forms of t given by Lemma 5. If t = interval(ωT ), then t =
(α, n) and by Lemma 5, interval(ωS) = t which implies (S, T ) is not a difficult pair.
Otherwise, t = (α, δ), is some other interval in intervals(σ(T )). If δ = n + 1, then
the interval (α, n) is in both intervals(S) and intervals(T ) which implies (S, T ) is
not a difficult pair. Otherwise, δ < n and so (α, δ) is in intervals(S) and intervals(T )
and (S, T ) is not a difficult pair.

Lemma 8. Let (S, T ) be a difficult pair of extended ordered binary trees of size n,
let ωS be the internal node of S whose right child is the leaf with label n, and let
ωT be the internal node of T whose right child is the leaf with label n. Then the
pair of trees (σ(S), σ(T )) have no one-off intervals between them.

Proof. Assume, to the contrary, that the pair (σ(S), σ(T )) have some one-off inter-
val between them. Without loss of generality, let t be the 1-interval of σ(T ) that is
also an interval of σ(S) and consider the possible forms of t given by Lemma 6. By
construction, neither σ(S) nor σ(T ) can have the interval (n, n+1) and so t 
= (n, n+
1). If t = 1-interval(left(ωT )), then t = (�right(left(ωT ))�, n) ∈ intervals(σ(S)) but
then Lemma 5 implies t = interval(ωS) and so (S, T ) is not a difficult pair. If
t = 1-interval(φ) then t = (�π(φT )�, n) = (�π(ωT )�, n) = interval(π(ωT )) but
then Lemma 5 again implies t = interval(ωS) and so (S, T ) is not a difficult
pair. If t = (α, n + 1), then (α, n) ∈ 1-intervals(T ) and (α, n) ∈ intervals(S)
and (S, T ) is not a difficult pair. Otherwise, t = (α, δ) such that δ < n, there-
fore (α, δ) ∈ 1-intervals(T ) and (α, δ) ∈ intervals(S) and so (S, T ) is not a difficult
pair.

We have now established the fact that the pair (σ(S), σ(T )) is a difficult tree
pair which underlies the correctness of DPS.

Theorem 1. Let (S, T ) be a difficult pair of extended ordered binary trees of size
n, then the pair (σ(S), σ(T )) of extended ordered binary trees of size n + 1 is a
difficult pair.

Proof. Immediate from Lemma 7 and Lemma 8.

Theorem 2. Let n be a natural number greater or equal to 4, then the Difficult
Pair Sampling algorithm is guaranteed to return a difficult pair of trees of size n.

Proof. We proceed by induction on n the size of the trees in the difficult pair
desired. In the base case, n = 4, in which case, DPS samples one of the 4 primitive
difficult pairs of trees which have been found by easy enumeration.

Now we suppose that the Difficult Pair Sampling algorithm is guaranteed to
return a difficult pair of trees for all m < n such that m,n ∈ N, 4 < n, and let
(S, T ) be a difficult pair of trees of size n−1 sampled by DPS. By Theorem 1 there
is at least one pair of difficult trees in the set of all pairs of growth neighbors of S
and T which DPS will find by enumeration. Consequently, DPS is guaranteed to
return a difficult pair of trees of size n.
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4 Time Complexity of DPS

We now analyze the time complexity of DPS and show the following:

Theorem 3. The Difficult Pair Sampling algorithm runs in O(n4) time, where n
is the size of the desired difficult tree pair.

Proof. Line 1 can be implemented to run in constant time by using a table of
the primitive difficult pairs. By returning a pair of pointers line 9 can also be
implemented to run in constant time. Therefore the time complexity of DPS is
determined by the for loop of lines 2 through 8. We name the for loops as follows:
let f be the for loop of lines 2 through 8, g be the for loop of lines 4 through 7,
and h be the for loop of lines 5 through 7.

We consider one iteration of f with (S, T ) being the current difficult pair and
suppose we use a table, t, to hold the pairs of difficult growth neighbors of (S, T ).
Given n, we bound the maximum size of t by the space required for the maximum
number of pairs of difficult growth neighbors of size n and so preallocate the space.
The space complexity of t is O(n3). If, on each iteration of f , the candidate difficult
growth neighbor pairs are stored from the beginning of the table contiguously, then
line 3 can be implemented to run in constant time by starting again at the beginning
of the table and keeping track of how many rows have been filled. Further, with
such a scheme, line 8 can be implemented to run in O(n) time by randomly selecting
a row (in constant time) of one of the candidate difficult pairs and then copying
the selected candidates (in linear time) to the space allocated for the current pair.
The time complexity of one iteration of f is therefore O(n+ g).

The time complexity of one iteration of g is the sum of the time required to
compute one growth neighbor of S and the time complexity of h. Using the word
representation of an extended ordered binary tree, it is possible to compute a growth
neighbor, including its intervals and 1-intervals, in linear time. Thus, one iteration
of g takes O(n+ h) steps.

The time complexity of one iteration of h is the sum of the time complexity
of computing one growth neighbor of T , the time complexity of checking if the
resulting pair of growth neighbors, (U, V ), is difficult, and the time complexity
of adding (U, V ) to choices. Now suppose we allocate two, two-dimensional ta-
bles, a and b, where we use a to store intervals(S) ∪ 1-intervals(T ) and b to store
intervals(T ) ∪ 1-intervals(S). These tables will require at most O(n2) space. If we
populate these tables as we construct the growth neighbors, then we can determine
whether the pair (U, V ) is difficult as we construct V and set a flag appropriately.
Then line 6 can be implemented to run in constant time by checking the flag. As-
suming the candidate pairs are being stored in table t, then adding the pair (U, V )
to choices can be a constant time increment operation. So the time complexity of
one iteration of h is O(n).

The number of iterations of h is determined by the number of growth neighbors
of T . As previously mentioned, for a tree of size n, a straightforward upper bound
on the number of growth neighbors is 3n + 1. Hence, h will execute O(n) times
and O(h) = O(n2). The same reasoning shows that g will also execute O(n) times
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and so O(g) = O(n3). Finally, it is clear that f also executes O(n) times and so
O(f) = O(n4) = O(DPS).

5 Sampling coverage of DPS

An ideal sampling algorithm not only has the potential to produce all possible
instances of interest, but also produces such interests uniformly at random. One
of the excellent features of Remy’s algorithm for generating trees is that it selects
a given tree uniformly at random from all trees and is ideal for many purposes.
This DPS algorithm does not have such uniformity, with some difficult tree pairs
being sampled more often than others. Since the number of difficult tree pairs of
a particular size is not known exactly, the degree of non-uniformity is difficult to
calculate exactly.

From work of Cleary, Elder, Rechnitzer and Taback [2], the fraction of difficult
pairs (and in fact its superset, the set of reduced tree pairs) goes to zero expo-
nentially quickly as the size of the tree pairs increase. Calculations by Cleary and
Maio [4] show that the number of difficult pairs appear to grow exponentially with
an exponential growth rate of about 2.17975, out of the set of equivalence classes
of all pairs with an exponential growth rate of about 2.4420, giving a fraction of
difficult pairs of less than one in million by size 44 and dropping with increasing
size. This is consistent with the observation (proven by Cleary, Rechnitzer and
Wong [5]) that for large n, the chance of selecting a difficult tree pair at random is
vanishingly small.

As far as the completeness of coverage, for small n where feasible, we found that
the DPS algorithm does sample from all hard cases. We considered tens of millions
of cases and did not find any difficult instances which were not produced at least
once by the DPS algorithm. However, though this gives evidence that the coverage
might be complete, this is by no means ensured. There is the potential for there
to be difficult tree pairs of size k with no growth neighbors of size k − 1. If such
difficult pairs existed, they would not be produced by the algorithm ever. We did
not encounter any such problematic growth pairs in our computational experiments,
but those experiments are necessarily of limited scope and the question remains for
later investigation about the completeness of the sampling coverage.

The number of distinct difficult pairs for larger n appears to grow exponentially
but the growth is not known exactly and even the exponential rate of growth is
not known. The only current means of producing all difficult pairs is equivalent
in running time to exhaustive enumeration of all tree pairs and is not feasible be-
yond small values, so it is not computationally feasible to check to see if instances
of even moderate size are not produced by the DPS algorithm. For example, us-
ing some natural notions of equivalence described in Cleary and Maio [4], out of
7,152,629,313,600 tree pairs of size 14, there are 17,561,480,528 difficult tree pairs.
It is not computationally feasible to test to see if the DPS algorithm will generate
all possible instances of that size.

We note that the examples produced by DPS lie in starkly broader classes of
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difficult pairs than those specific known earlier examples of Dehornoy [8], Pournin
[11], and Cleary and Maio [3]. Those earlier examples give difficult tree pairs of
increasingly large sizes but though there are multiple possible examples of increasing
size, these numbers do not grow nearly as fast as the set of all possible difficult
pairs or as those constructed here. Those examples were constructed for different
purposes and there was no intent to get broad coverage of representative difficult
instances.

If it is the case that there is complete coverage, the question of the degree of
uniformity is of interest. By “degree of uniformity” we mean some indication of the
differences in rates of difficult pairs of the same size from being chosen at random.
This question has some complications because some of the difficult pairs have cer-
tain symmetries arising which raise questions about what exactly is meant in these
instances: uniform sampling of instances or of equivalence classes of instances with
respect to some natural symmetries arising from the dihedral symmetries of regular
polygons. In any case, as far as the degree of uniformity, computations for small n
with exhaustive coverage show essentially complete coverage of difficult instances
with factors in the range of 2 between the first and third quartiles of number of
instances and a factor of about 7 between the most commonly and least commonly
generated. There is no reason to presume that this DPS algorithm gives uniformity
and these modest experiments show that to be extremely unlikely.

We note that though it is not clear as to the coverage, the DPS algorithm
gives a range of difficult pairs. In general, there are many instances where random
instances of a problem are by no means representative and often can be attacked
with tools that do not capture the essential difficulty. For example, randomly chosen
tree pairs do not form good test cases for rotation distance algorithms since with
significant probabilities, randomly-selected tree pairs have already many common
edges– on average (16/π−5)n ∼ 0.093n as proven by Cleary, Rechnitzer, and Wong
[5]. Furthermore, randomly selected tree pairs generally have many possible one-off
edge reductions as well – also on average (16/π − 5)n ∼ 0.093n proven by Cleary,
Rechnitzer and Wong [5] after compelling numerical evidence of Chu and Cleary
[1] estimating those fractions numerically. There are two previously considered
algorithms for generating hard cases of increasing size and neither works effectively.
The “test and reject” sampling algorithm does give uniform coverage of instances,
but the number of needed iterations grows exponentially with size as the scarcity
of difficult pairs falls. The “test and reduce to the largest possible difficult sub-
problem” is not computationally efficient, may not give instances of a prescribed
size or even in a prescribed size range, and may well not have uniform coverage of
difficult instances. So the DPS algorithm does give a rich range of possible instances
in a computationally efficient manner compared to previously known algorithms.
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1985. DOI: 10.1051/ita/1985190201791.

[13] Sleator, Daniel D., Tarjan, Robert E., and Thurston, William P. Rotation dis-
tance, triangulations, and hyperbolic geometry. J. Amer. Math. Soc., 1(3):647–
681, 1988. DOI: 10.2307/1990951.

Received: 16th February 2020


