
Acta Cybernetica 25 (2022) 703–716.

The Generalized Epsilon Function:

An Alternative to the Exponential Function

Tamás Jónása

Abstract

It is well known that the exponential function plays an extremely im-
portant role in many areas of science. In this study, a generator function-
based mapping, called the generalized epsilon function is presented. Next,
we demonstrate that the exponential function is an asymptotic generalized
epsilon function. Exploiting this result and the fact that this new function
is generator function-dependent, it can be utilized as a very flexible alterna-
tive to the exponential function in a wide range of applications. We should
add that if the generator is a rational function, then the generalized epsilon
function is rational as well. In this case, the generalized epsilon function
is computationally simple and it may be treated as an easy-to-compute al-
ternative to the exponential function. In this paper, we briefly present two
applications of this novel function: an approximation to the exponential prob-
ability distribution, and an alternative to the sigmoid function on a bounded
domain.

Keywords: exponential function, approximation, epsilon function, exponen-
tial distribution, sigmoid function

1 Preliminaries

In [9], Dombi et al. introduced the epsilon function and by using this mapping
the authors constructed the epsilon probability distribution that may be viewed as
an alternative to the exponential probability distribution. The epsilon function is
defined as follows.

Definition 1. The epsilon function ε
(λ)
d (x) is given by

ε
(λ)
d (x) =

(
d+ x

d− x

)λ d
2

, (1)

where λ ∈ R \ {0}, d > 0, x ∈ (−d,+d).
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In [9], we proved the following theorem, which states an important asymptotic
property of the epsilon function.

Theorem 1. For any x ∈ (−d,+d), if d → ∞, then

ε
(λ)
d (x) → eλx. (2)

It should be mentioned that this results was also utilized for constructing an effec-
tive approximation to the normal probability distribution (see [8]).

The epsilon function given in Definition 1 may be treated as an alternative
of the exponential function on the domain (−d, d). The exponential function has
an extremely wide range of applications in many areas of science including math-
ematics, physics, chemistry, computer science, economics and biology (see, e.g.,
[19, 1, 4, 15, 5]). Our motivation was to generalize the epsilon function such that
it can be used to approximate the exponential function with an even higher level
of flexibility.

In this paper, we will present the generalized epsilon function, which is a gener-
ator function-based mapping from the domain [−d, d] to the non-negative extended
real line (d > 0). We will prove that if d → ∞, then the generalized epsilon func-
tion coincides with the exponential function. This result allows us to treat the
generalized epsilon function as an alternative to exponential function on a bounded
domain. Since this new function is generator function-dependent, it is very flexible
and it can be utilized in a wide range of applications. Here, we will briefly present
two applications of the generalized epsilon function: an approximation to the ex-
ponential probability distribution, and an alternative to the sigmoid function on a
bounded domain.

We will use the common notation R for the real line and R for the extended
real line, i.e., R = [−∞,∞]. Also, R+ will denote the non-negative extended real
line, i.e., R+ = [0,∞]. We will consider the arithmetic operations on the extended
real line according to Klement et al. [13] and Grabisch et al. [10].

2 The generalized epsilon function

First, we will construct a generator function-based mapping, called the general
epsilon function, which we can use to approximate the exponential function. Then,
we will prove that the exponential function is an asymptotic generalized epsilon
function.

2.1 Construction

Let d ∈ R, d > 0 and let λ ∈ R \ {0}. Our aim is to construct a function

f
(α)
d : [−d, d] → R+ in the form

f
(α)
d (x) = c hα

d (x), (3)
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where hd : [−d, d] → R+ is a continuous and strictly monotonic mapping, c > 0

and α ∈ R \ {0}, such that f
(α)
d approximates the exponential function eλx on the

domain [−d, d]. Noting the basic properties of the exponential function eλx, we set

the following requirements for f
(α)
d :

(a) For any x ∈ [−d, d], f
(α)
d (x) ∈ R+.

(b) If λ > 0 (λ < 0, respectively), then f
(α)
d is strictly increasing (decreasing,

respectively).

(c) f
(α)
d is differentiable on (−d, d); and f

(α)
d (x) and eλx are identical to first

order at x = 0, i.e.,

(c1)

f
(α)
d (0) = 1 and

(c2)

df
(α)
d (x)

dx

∣∣∣∣∣
x=0

= λ.

As c > 0 and α 
= 0, there exists a ĉ > 0 such that c = ĉα. Using this substitution,
Eq. (3) can be written as

f
(α)
d (x) = (ĉ hd(x))

α
.

Since we wish f
(α)
d to be a generator function-based mapping from [−d, d] to R+

(see requirement (a)), let hd have the form

hd(x) = g

(
x+ d

2d

)
, x ∈ [−d, d],

where g : [0, 1] → R+ is a continuous and strictly monotonic function. This means
that

f
(α)
d (x) =

(
ĉ g

(
x+ d

2d

))α

(4)

for any x ∈ [−d, d]. We will call the function g the generator of f
(α)
d .

Taking into account requirement (b), we have that if λ > 0, then for a strictly
increasing (decreasing, respectively) generator g, α has to be positive (negative,
respectively). Similarly, noting requirement (b), we have that if λ < 0, then for
a strictly increasing (decreasing, respectively) generator g, α has to be negative
(positive, respectively).

Using Eq. (4), the requirement (c1) leads us to(
ĉ g

(
1

2

))α

= 1,
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from which

ĉ =

(
g

(
1

2

))−1

and so Eq. (4) can be written as

f
(α)
d (x) =

(
g
(
x+d
2d

)
g
(
1
2

) )α

(5)

for any x ∈ [−d, d].
Next, considering requirement (c2), we get that g has to be a differentiable

function on (0, 1) and

(
f
(α)
d (x)

)′ ∣∣∣∣∣
x=0

=

((
g
(
x+d
2d

)
g
(
1
2

) )α)′ ∣∣∣∣∣
x=0

= λ. (6)

The first derivative of f
(α)
d is

(
f
(α)
d (x)

)′
= α

(
g
(
x+d
2d

)
g
(
1
2

) )α−1
g′
(
x+d
2d

)
g
(
1
2

) 1

2d

and so from Eq. (6), we get

α = 2λd
g
(
1
2

)
g′
(
1
2

) .
Hence, using Eq. (5), f

(α)
d (x) can be written as

f
(α)
d (x) =

(
g
(
x+d
2d

)
g
(
1
2

) )2λd
g( 1

2 )
g′( 1

2 )

for any x ∈ [−d, d]. Notice that the generator function g needs to meet the criterion
g′
(
1
2

)

= 0 as well.

Remark 1. If λ > 0 and g is strictly increasing, then g′
(
1
2

)
> 0 and so α > 0,

which means that f
(α)
d is strictly increasing on [−d, d]. Similarly, if λ > 0 and g

is strictly decreasing, then g′
(
1
2

)
< 0, which implies α < 0 and so f

(α)
d is strictly

increasing on [−d, d]. Therefore, if λ > 0, then f
(α)
d is strictly increasing on [−d, d]

regardless if g is a strictly increasing or a strictly decreasing function. Based on

similar considerations, we get that if λ < 0, then f
(α)
d is strictly decreasing on

[−d, d] independently of the monotonicity of function g. Therefore, f
(α)
d satisfies

the requirement (b).

Now, using the construction presented so far, we will introduce the so-called
generalized epsilon function, which can be used to approximate the exponential
function. In this definition, we will utilize the following class of functions.
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Definition 2. Let G be the set of all functions g : [0, 1] → R+ that are strictly
monotonic and differentiable on (0, 1) with g′

(
1
2

)

= 0, where g′ denotes the first

derivative of g, and g′ is continuous on (0, 1).

For a strictly increasing g ∈ G, g(1) = ∞ will mean the limit limx→1 g(x) =
∞. Similarly, for a strictly decreasing g ∈ G, g(0) = ∞ will stand for the limit
limx→0 g(x) = ∞.

Definition 3 (Generalized epsilon function). Let g ∈ G, let λ ∈ R \ {0} and d > 0.

We say that the function ε
(λ)
d,g : [−d, d] → R+, which is given by

ε
(λ)
d,g(x) =

(
g
(
x+d
2d

)
g
(
1
2

) )2λd
g( 1

2 )
g′( 1

2 )
, (7)

is a generalized epsilon function (GEF) with the parameters λ and d induced by the
generator function g.

Later, we will show that the epsilon function, which was first introduced by

Dombi et al. in [9], is just a special case of function ε
(λ)
d,g . That is, ε

(λ)
d,g may be

viewed as a generalization of the epsilon function.

2.2 Identicality of two generalized epsilon functions

As a GEF is generator function-dependent, the question when two GEFs are iden-
tical naturally arises. The following proposition gives a sufficient condition for the
equality of two generalized epsilon functions that are induced by two generator
functions.

Proposition 1. The GEF is uniquely determined up to any transformation

t(x) = αxβ , x ∈ R+ (8)

on its generator function, if α > 0 and β ∈ R \ {0}.

Proof. Let λ ∈ R \ {0}, d > 0 and let the GEF ε
(λ)
d,g be induced by the generator

function g ∈ G. Furthermore, let α > 0 and β ∈ R \ {0}. Now, let the function
t : R+ → R+ be by given by Eq. (8), and let h(x) = t(g(x)) for any x ∈ [0, 1].
Then, h ∈ G and for any x ∈ [−d, d], the GEF induced by h can be written as

ε
(λ)
d,h(x) =

(
h
(
x+d
2d

)
h
(
1
2

) )2λd
h( 1

2 )
h′( 1

2 )
=

(
αgβ

(
x+d
2d

)
αgβ

(
1
2

) )2λd
αgβ( 1

2 )
αβgβ−1( 1

2 )g′( 1
2 )

=

=

(
g
(
x+d
2d

)
g
(
1
2

) )2λd
g( 1

2 )
g′( 1

2 )
= ε

(λ)
d,g(x).
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3 The exponential function as an asymptotic gen-
eralized epsilon function

Let ε
(λ)
d,g be a GEF induced by the generator function g ∈ G, where λ ∈ R \ {0} and

d > 0. Due to the construction of ε
(λ)
d,g , it has the following properties:

• For any x ∈ [−d, d], ε
(λ)
d,g(x) ∈ R+.

• If λ > 0 (λ < 0, respectively), then ε
(λ)
d,g is strictly increasing (decreasing,

respectively).

• ε
(λ)
d,g(x) and eλx are identical to first order at x = 0.

Here, we will demonstrate an important asymptotic property of the generalized
epsilon function.

Theorem 2. Let g ∈ G, λ ∈ R \ {0} and d > 0. Let ε
(λ)
d,g : [−d, d] → R+ be a GEF

induced by g according to Eq. (7). Then, for any x ∈ (−d,+d),

lim
d→∞

ε
(λ)
d,g(x) = eλx. (9)

Proof. Using the definition of ε
(λ)
d,g , for any x ∈ (−d,+d), Eq. (9) is equivalent to

lim
d→∞

(
2λd

g
(
1
2

)
g′
(
1
2

) ln
(
g
(
x+d
2d

)
g
(
1
2

) ))
= λx. (10)

The left hand side of Eq. (10) can be written as

2λ
g
(
1
2

)
g′
(
1
2

) lim
d→∞

⎛
⎜⎜⎝
ln

(
g( x+d

2d )
g( 1

2 )

)
1
d

⎞
⎟⎟⎠ . (11)

Notice that we can use the L’Hospital rule to compute the limit in Eq. (11). Taking
into account that g is differentiable on (0, 1) and g′ is continuous on (0, 1), after
direct calculation, we get

2λ
g
(
1
2

)
g′
(
1
2

) lim
d→∞

⎛
⎜⎜⎝
ln

(
g( x+d

2d )
g( 1

2 )

)
1
d

⎞
⎟⎟⎠ = 2λ

g
(
1
2

)
g′
(
1
2

) lim
d→∞

⎛
⎜⎜⎜⎝
(
ln

(
g( x+d

2d )
g( 1

2 )

))′
(
1
d

)′
⎞
⎟⎟⎟⎠ =

= 2λ
g
(
1
2

)
g′
(
1
2

) lim
d→∞

(
g′
(
x+d
2d

)
g
(
x+d
2d

) x

2

)
= λx.
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Example 1. Let g(x) = cos(x), where x ∈ [0, 1]. Clearly, g ∈ G, i.e., g satisfies
the requirements for a generator function of a generalized epsilon function. After
direct calculation, we get that the GEF induced by the function g is

ε
(λ)
d,g(x) = ε

(λ)
d,g(x) =

(
cos

(
x+d
2d

)
cos

(
1
2

) )− 2λd

tan( 1
2 ) ≈

(
1.14 · cos

(
x+ d

2d

))−3.66·λd
,

where d > 0 and x ∈ [−d, d]. Table 1 shows the maximum absolute relative errors,
i.e.,

max
x∈(−Δ,Δ)

∣∣∣∣∣ε
(λ)
d,g(x)− eλx

eλx

∣∣∣∣∣ ,
of this approximation for various values of d and Δ, where λ = 1.

Table 1: The maximum absolute relative errors of the approximations of eλx using

ε
(λ)
d,g(x), for λ = 1 and g(x) = cos(x).

d x ∈ (−2, 2) x ∈ (−5, 5) x ∈ (−10, 10) x ∈ (−20, 20)
100 2.42× 10−2 1.62× 10−1 8.32× 10−1 1.08× 10+1

1000 2.38× 10−3 1.50× 10−2 6.13× 10−2 2.69× 10−1

Based on Table 1, the GEF approximates the exponential function around zero

quite well, which is in line with the construction of ε
(λ)
d,g . On the other hand, if x ' 0

or x ( 0, (x ∈ [−d, d]), then the goodness of this approximation considerably
decreases. Figure 1 shows the plots of the GEF, exponential function and their
absolute relative difference for λ = 1, d = 100, g(x) = cos(x).

−5 −4 −3 −2 −1 1 2 3 4 5

50

100

150

x

eλx

ε
(λ)
d,g(x)

−5 −4 −3 −2 −1 1 2 3 4 5

0.05

0.10

0.15

0.20

x

∣∣∣∣ ε(λ)
d,g(x)−eλx

eλx

∣∣∣∣

Figure 1: Plots of the GEF, exponential function and their absolute relative differ-
ence for λ = 1, d = 100, g(x) = cos(x).
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We can achieve more effective approximations to the exponential function eλx on
the interval [−d, d], if for a strictly increasing g we require g(0) = 0 and for a strictly
decreasing g we require g(1) = 0. Table 2 summarizes the main properties of a GEF
induced by g in these cases. Note that if g is a strictly increasing function with

g(0) = 0 and λ < 0, then we interpret ε
(λ)
d,g(−d) as ε

(λ)
d,g(−d) = limx→−d+ ε

(λ)
d,g(x) =

∞. Similarly, if g is a strictly decreasing function with g(1) = 0 and λ > 0, then we

interpret ε
(λ)
d,g(d) as ε

(λ)
d,g(d) = limx→d− ε

(λ)
d,g(x) = ∞. In Table 2, < ∞ stands for a

finite value, while ↗ (↘, respectively) denotes that a function is strictly increasing
(decreasing, respectively).

Table 2: Main properties of the GEF ε
(λ)
d,g depending on the values of g(0) and g(1).

g λ g(0) g(1) ε
(λ)
d,g(−d) ε

(λ)
d,g(d) ε

(λ)
d,g

↗ > 0 0 < ∞ (∞) 0 < ∞ (∞) ↗
↗ < 0 0 < ∞ (∞) ∞ > 0 (0) ↘
↘ > 0 < ∞ (∞) 0 > 0 (0) ∞ ↗
↘ < 0 < ∞ (∞) 0 < ∞ (∞) 0 ↘

Example 2. Let g(x) = x, x ∈ [0, 1]. Then, g
(
1
2

)
= 1

2 , g
′ ( 1

2

)
= 1 and via direct

calculation, we get that the GEF induced by g is

ε
(λ)
d,g(x) =

(
1 +

x

d

)λd

,

where d > 0 and x ∈ [−d, d]. It is well known that limd→∞
(
1 + x

d

)λd
= eλx, which

is in line with the result of Theorem 2.
It should be added that ε

(λ)
d,g(x) is closely related to the cumulative distribution

function of the p-exponential distribution, which is given as

Fp(x) =

⎧⎪⎪⎨
⎪⎪⎩
0, if x ≤ 0

1−
(
1− x

p+1

)p

, if x ∈ (0, p+ 1)

1, if x ≥ p+ 1,

where p > 0 (see Sinner et al. [18]).
Table 3 shows the maximum absolute relative errors of the approximations for

various values of d and Δ (x ∈ (−Δ,Δ)), where λ = 1. Figure 2 shows the plots
of the GEF, exponential function and their absolute relative difference for λ = 1,
d = 100, g(x) = x.

Example 3. Let gα(x) =
(
1−x
x

)α
, x ∈ [0, 1] and α 
= 0. It should be added

that the function gα is known as the additive generator of the Dombi operators in
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Table 3: The maximum absolute relative errors of the approximations of eλx using

ε
(λ)
d,g(x), for λ = 1 and g(x) = x.

d x ∈ (−2, 2) x ∈ (−5, 5) x ∈ (−10, 10) x ∈ (−20, 20)
100 2.00× 10−2 1.21× 10−1 4.15× 10−1 9.01× 10−1

1000 2.00× 10−3 1.25× 10−2 4.91× 10−2 1.83× 10−1

−5 −4 −3 −2 −1 1 2 3 4 5

50

100

150

x

eλx

ε
(λ)
d,g(x)

−5 −4 −3 −2 −1 1 2 3 4 5

0.05

0.10

0.15

0.20

x

∣∣∣∣ ε(λ)
d,g(x)−eλx

eλx

∣∣∣∣

Figure 2: Plots of the GEF, exponential function and their absolute relative differ-
ence for λ = 1, d = 100, g(x) = x.

continuous-valued logic (see [7]). Clearly, gα ∈ G, i.e., gα satisfies the requirements
for a generator of a GEF. Exploiting Proposition 1, we get that for any α 
= 0,
gα induces the same GEF independently of the value of α. Let α = 1, and let
g(x) = gα(x) = 1−x

x , x ∈ [0, 1]. Then, g
(
1
2

)
= 1, g′

(
1
2

)
= −4 and via direct

calculation, we get that the GEF induced by g is

ε
(λ)
d,g(x) =

(
d+ x

d− x

)λ d
2

, (12)

where d > 0 and x ∈ [−d, d]. Note that this generalized epsilon function is identical
to the epsilon function given in Definition 1, which was introduced in [9]. Table
4 shows the maximum absolute relative errors of the approximations for various
values of d and Δ (x ∈ (−Δ,Δ)), where λ = 1.

Figure 3 shows the plots of the GEF, exponential function and their absolute
relative difference for λ = 1, d = 100, g(x) = 1−x

x .

Notice that in Example 2, g(0) = 0 and g(1) = 1, i.e., g(1) is finite, while in
Example 3, g(0) = ∞ (more precisely, limx→0 g(x) = ∞) and g(1) = 0. We can
see that in this latter case, we obtained a much lower maximum absolute relative
approximation error. It is worth noting that based on Proposition 1, the generator
g(x) = x

1−x induces the same GEF as that in Eq. (12).
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Table 4: The maximum absolute relative errors of the approximations of eλx using

ε
(λ)
d,g(x), for λ = 1 and g(x) = 1−x

x .

d x ∈ (−2, 2) x ∈ (−5, 5) x ∈ (−10, 10) x ∈ (−20, 20)
100 2.67× 10−4 4.18× 10−3 3.41× 10−2 3.14× 10−1

1000 2.67× 10−6 4.17× 10−5 3.33× 10−4 2.67× 10−3

−5 −4 −3 −2 −1 1 2 3 4 5

50

100

150

x

eλx

ε
(λ)
d,g(x)

−5 −4 −3 −2 −1 1 2 3 4 5

2

4

6

·10−3

x

∣∣∣∣ ε(λ)
d,g(x)−eλx

eλx

∣∣∣∣

Figure 3: Plots of the GEF, exponential function and their absolute relative differ-
ence for λ = 1, d = 100, g(x) = 1−x

x .

Remark 2. It should be added that if the generator of a GEF is a rational function,
then the GEF is rational as well (see, e.g., Eq. (12)). In such a case, the generalized
epsilon function is computationally simple, it may be treated as an easy-to-compute
alternative to the exponential function.

4 Some applications of the generalized epsilon
function

Since the exponential function may be viewed as an asymptotic generalized epsilon
function, this latter may have a considerable application potential in many areas of
science. Here, we will briefly present two particular applications: the first one is an
approximation to the exponential distribution, the second one is an approximation
to the sigmoid function.
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4.1 An approximation to the exponential probability distri-
bution

The exponential probability distribution plays an important role in probability
theory and mathematical statistics (see, e.g., [6, 5, 2, 3]). Now, we will demonstrate
how the cumulative distribution function (CDF) of the random variable, which
has an exponential probability distribution with a λ > 0 parameter value, can be
approximated using the generalized epsilon function.

Proposition 2. Let g ∈ G such that g is either strictly increasing with g(0) = 0 and
g(1) = ∞, or it is strictly decreasing with g(1) = 0 and g(0) = ∞. Furthermore,

let λ > 0, d > 0 and let ε
(λ)
d,g : [−d, d] → R+ be a GEF induced by g according to Eq.

(7). Then the function F
(λ)
d,g : R → [0, 1] given by

F
(λ)
d,g (x) =

⎧⎪⎨
⎪⎩
0, if x ≤ 0

1− ε
(−λ)
d,g (x), if 0 < x ≤ d

1, if x > d

(13)

is a CDF of a continuous random variable and for any x ∈ R,

lim
d→∞

F
(λ)
d,g (x) = 1− e−λx. (14)

Proof. Clearly, F
(λ)
d,g (x) is continuous and it satisfies the requirements for a CDF,

while Eq. (14) is an immediate consequence of Theorem 2.

Remark 3. Utilizing the generator gα(x) =
(
1−x
x

)α
, x ∈ [0, 1] and α 
= 0, we get

F
(λ)
d,gα

(x) =

⎧⎪⎪⎨
⎪⎪⎩
0, if x ≤ 0

1−
(

d+x
d−x

)−λ d
2

, if 0 < x < d

1, if x ≥ d,

which is the CDF of the epsilon probability distribution (see [9]). Therefore, the
CDF given in Eq. (13) may be treated as a generator function-based generalization

of the CDF of the epsilon probability distribution. It is worth noting that F
(λ)
d,gα

approximates the exponential CDF quite well even for small values of the parameter
d. For example, for λ = 1 and d = 10, we have

max
x∈(0,10)

∣∣∣1− e−λx − F
(λ)
d,gα

(x)
∣∣∣ < 4.53× 10−3

and

max
x∈(0,10)

∣∣∣∣∣1− e−λx − F
(λ)
d,gα

(x)

1− e−λx

∣∣∣∣∣ < 2.03× 10−3.
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4.2 An approximation to the sigmoid function

It is well-known that the sigmoid function σ(λ) : R → (0, 1), which is given by

σ(λ)(x) =
1

1 + e−λx
, (15)

where λ ∈ R \ {0}, has a lot of applications in many areas including computer
science, engineering, biology and economics (see, e.g., [11, 12, 17, 14, 16]). It
should be noted that the sigmoid function is also known as the logistic function.
For example, in probability theory and mathematical statistics the logistic function
can be utilized as a cumulative distribution function (logistic distribution) or as a
regression function (logistic regression). The following proposition is an immediate
consequence of Theorem 2.

Proposition 3. Let g ∈ G such that g is either strictly increasing with g(0) = 0,
or it is strictly decreasing with g(1) = 0. Furthermore, let λ ∈ R \ {0}, d > 0 and

let ε
(λ)
d,g : [−d, d] → R+ be a GEF induced by g according to Eq. (7). Then, for any

x ∈ R,

lim
d→∞

1

1 + ε
(−λ)
d,g (x)

=
1

1 + e−λx
. (16)

Exploiting the result of Proposition 3, the function S
(λ)
d,g : [−d, d] → [0, 1], which

is given by

S
(λ)
d,g (x) =

1

1 + ε
(−λ)
d,g (x)

.

may be viewed as a viable alternative to the sigmoid function on the bounded
domain [−d, d].

Remark 4. More generally, if g is either strictly increasing with g(0) = 0 and
g(1) = ∞, or g is strictly decreasing with g(1) = 0 and g(0) = ∞, then the function

σ
(λ)
d,g (x) = g−1

⎛
⎜⎜⎝
(
g
(
x+d
2d

)
g
(
1
2

) )−2λd
g( 1

2 )
g′( 1

2 )

⎞
⎟⎟⎠ ,

may be treated as an alternative to the sigmoid function on the bounded domain

[−d, d]. Clearly, with the choice g(x) = 1−x
x , x ∈ [0, 1], σ

(λ)
d,g (x) = S

(λ)
d,g (x) for any

x ∈ [−d, d].

5 Conclusions

In this study, we presented the generalized epsilon function, which is a generator
function-based mapping from the bounded domain [−d, d] to the non-negative ex-
tended real line (d > 0). We proved that if d → ∞, then the generalized epsilon
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function coincides with the exponential function. This result allows us to treat the
generalized epsilon function as an alternative to exponential function on a bounded
domain. Since this new function is generator function-dependent, it is very flexible
and it can be utilized in a wide range of applications.
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