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Models and Algorithms for Social Distancing in

Order to Stop the Spread of COVID-19

Alexandru Popaab

Abstract

Currently there are many attempts around the world to use computers,
smartphones, tablets and other electronic devices in order to stop the spread
of COVID-19. Most of these attempts focus on collecting information about
infected people, in order to help healthy people avoid contact with them.
However, social distancing decisions are still taken by the governments em-
pirically. That is, the authorities do not have an automated tool to recom-
mend which decisions to make in order to maximize social distancing and to
minimize the impact for the economy.

In this paper we address the aforementioned problem and we design an
algorithm that provides social distancing methods (i.e., what schools, shops,
factories, etc. to close) that are efficient (i.e., that help reduce the spread of
the virus) and have low impact on the economy.

On short: a) we propose several models (i.e., combinatorial optimization
problems); b) we show some theoretical results regarding the computational
complexity of the formulated problems; c) we give an algorithm for the most
complex of the previously formulated problems; d) we implement and test
our algorithm.

Keywords: combinatorial optimization, COVID-19, algorithm, NP-hard
problem

1 Introduction

The rapid spread of COVID-19 around the world is stunning. This novel coron-
avirus created an unprecedented lockdown in many countries which, in turn, caused
an immense economic and social impact. Thus, many researchers investigate meth-
ods to stop this epidemic as soon as possible. For example, the list of papers on
COVID-19 collected by the World Health Organization [28] contains around 10 000
publications, a huge number, given that the virus was first discovered in January
2020. The struggle involves researchers from various fields such as bioinformatics,
epidemiology, sociology, mathematics and computer science.
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One key factor to stop the spread of the virus is the social distancing (see,
e.g., [10]). Many companies and organizations try to develop applications to aid
the social distancing (see [25] for a long list of current such projects). However,
many applications seem to focus on tracking people movement. To the best of
our knowledge, we do not know any application that advises the authorities which
decisions to make. As Thomas Pueyo writes in his article published on the 19th
of March 2020 [20] (Chart 16), governments should have a chart with the effect
and the cost of various social distancing measures. As it is currently observed in
the world (and especially in Europe), many governments were afraid to take severe
social distancing measures in order to avoid a high economic loss.

In this paper we try to address this issue as follows. We first build a model (i.e.,
a combinatorial optimization problem) that captures the current setting: the risk
of the people to get COVID-19, the contact between various people and the cost
of closing various facilities such as schools, parks, cities, factories, etc.. We show
that the problem we introduce is NP-hard (as it is often the case with complex
combinatorial optimization problems). Then, since we cannot solve the problem
exactly in polynomial time, we provide a heuristic polynomial time algorithm for
this problem. To understand the performance of our algorithm, we implement and
test it in Section 5. We generate our test data using special probability distribu-
tions that simulate real world social networks as we present in Section 5.1. Our
experiments are encouraging and show that even with a 1% budget (from the total
cost of locking down the entire country), we can reduce the population risk by more
than 5 times compared with the situation in which no measures are taken. Thus,
we show that there is a possibility for a “beautiful” lockdown that is efficient in the
fight with COVID-19 and safe for the economy.

1.1 Related work

In this paragraph we present briefly the related work in the field. Since the number
of papers written on the topic is huge, it is impossible to mention all the results.
Nevertheless, we enumerate a couple of papers that we consider relevant to the
current work.

We first mention that some of the models presented in the paper are connected
to random graphs. Random graphs is an active area of research which combines
probability theory and graph theory. The subject began in 1960 with the seminal
paper of Erdös and Rényi [6]. The book by Bollobás [5] is the standard source for
the field. Other notable sources are [11, 7, 15, 2].

We now briefly mention the role of operations research in developing epidemic
response strategies. One of the main applications of operations research was health-
care, e.g. [21, 12, 30, 24, 4, 18]. However, most of the papers in the operations re-
search field are concerned with either simulation frameworks [27, 23, 16] or resource
allocation problems [22, 17, 13, 3].

A few models in the literature attempted to evaluate and devise response strate-
gies among which we mention [26, 14, 31]. For more details, we refer the reader to
the survey of Yu et al. [29], the related work section in the paper of Gillis et al. [9],
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and the survey of Adiga et al. [1].
We mention that the paper is written in a bottom-up fashion. More precisely,

in Section 2 we present a preliminary model that we designed in the early stages of
our study. Even if we do not consider the model in Section 2 further in the paper,
the motivation for introducing it is two-fold. Firstly, by presenting the model in
Section 2 we show the reader the complete path we took to design the model in
Section 3 (instead of simply presenting the final product). Secondly, researchers
who aim to study and improve the models presented in this paper may find useful
to understand the difficulty behind designing a comprehensive model.

The paper is structured as follows. At first, in Section 2 we present the first
set of problems that aim to model the problem. We also show that these problems
are NP-hard. Then, in Section 3 we present our actual framework. In Section 4
we design an algorithm for the problem presented in Section 3. Then, in Section 5
we describe our experiments. Finally, in Section 6 we discuss several directions for
future work.

2 Preliminary ideas

In this section we introduce a preliminary model (i.e., a collection of related combi-
natorial optimization problems) that helped us to derive the model from Section 3.

2.1 A tentative framework

The input consists of an undirected complete graph G = (V,
(
V
2

)
) and a function

p :
(
V
2

)
→ [0, 1]. Each node v ∈ V in the graph corresponds to a person and p(u, v)

is the probability that two people get in contact with each other. Moreover, each
vertex v ∈ V has two associated values, risk : V → [0, 1] and vulnerability : V →
[0, 1], representing how likely is a person to spread the disease (e.g., it can be 1 if a
person is tested positive with COVID-19 or close to 1 if a person was recently in a
“red area”), respectively how vulnerable is a certain person (e.g., there are studies
showing that elderly people and people with chronic diseases are more likely to be
affected).

Besides the input graph we are given k1 sets of vertices V 1 = {V 1
1 , V

1
2 , . . . , V

1
k1
}

each one having associated a value c1 : {1, 2, . . . , k1} → R+ and a value r1 :
{1, 2, . . . , k1} → [0, 1]. The cost c1(i) represents the cost of reducing the value of
all p(a, b), ∀a, b ∈ V 1

i to p(a, b) · r1(i) . Informally, the cost c1(i) represents the
cost of closing facility i (i.e., a school, a bar, restaurant, theater, etc.), which in
turn reduces the probability of interaction of people belonging to the corresponding
facility. In a simple variant, each r1(i) can be set to 0, representing that two people
who belong to that facility will have probability 0 to interact once the facility is
closed.

Then, we have k2 sets of vertices V 2 = {V 2
1 , V

2
2 , . . . , V

2
k2
} each one with a value

c2 : {1, 2, . . . , k2} → R+ and a value r2 : {1, 2, . . . , k2} → [0, 1]. The cost c2(i)
represents the cost of reducing the value of all p(a, b) to p(a, b) ·r2(i), where a ∈ V 2

i
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and b /∈ V 2
i . Informally, the cost c2(i) represents the cost of isolating the people

in the group V 2
i (for example, quarantining persons, small groups or even closing

entire cities).

2.2 Possible combinatorial optimization problems

Now we introduce a couple of objective functions and constraints that aim to model
the current scenario. The overall goal is to reduce the spread of the virus while
keeping the cost at a minimum. The first group of problems consider a simplified
variant of the framework, ignoring the vulnerability and the risk of each person.

In the first problem the goal is to optimize the economic cost of closing various
facilities and isolating various groups of people, while maximizing the number of
components created.

Problem 1. We are given a budget B ∈ R+ and a threshold P ∈ [0, 1]. The goal is

to select a set V̂ 1 ⊆ V 1 and a set V̂ 2 ⊆ V 2 such that the following two conditions
are met:

1. ∑
i∈V̂ 1

c1(i) +
∑
i∈V̂ 2

c2(i) ≤ B

2. After the sets of facilities V̂ 1 and V̂ 2 are selected and the corresponding edges
have their probabilities decreased (as described in Subsection 2.1), we remove
all the edges (a, b) ∈

(
V
2

)
such that p(a, b) ≤ P . The goal is to maximize the

number of connected components in the remaining graph.

As we stated above, the model does not consider all the information. However,
it is useful in cases where not much data is available to conduct preliminary tests.
Moreover Problem 1 is interesting to study from the theoretical point of view since
it is a novel combinatorial optimization problem.

Notice that even this oversimplified variant of the framework is NP-hard since
it is a generalization of the classical Vertex Cover problem as we show in Subsec-
tion 2.3.

The second problem that we introduce is similar to the first problem. Here the
goal is to minimize the budget, while requiring for at least a certain number of
connected components to be created.

Problem 2. We are given a number of desired connected components N and a
threshold P ∈ [0, 1]. The goal is to select a set V̂ 1 ⊆ V 1 and a set V̂ 2 ⊆ V 2

such that the following holds. After the sets of vertices V̂ 1 and V̂ 2 are selected and
the corresponding edges have their probabilities decreased, we remove all the edges
(a, b) ∈

(
V
2

)
such that p(a, b) ≤ P . The number of connected components in the

remaining graph should be at least N . The goal is to minimize∑
i∈V̂ 1

c1(i) +
∑
i∈V̂ 2

c2(i)
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If we ask to maximize only the number of connected components we might
obtain a solution that does not match the original motivation. For example, we
can obtain a solution where we have many small components and a huge component,
which is, of course, not desired in practice. Thus, we introduce the following two
problems, in which we impose a restriction on the size of the connected components
resulted after the closure of facilities.

Problem 3. The input is the same as in Problem 1. The goal is to minimize the
number of nodes of the largest connected components in the remaining graph.

Problem 4. The input is the same as in Problem 2, but N , instead of being
the number of connected components desired, is the maximum allowed size of a
connected component. Thus, the goal is to choose a set of facilities of minimum total
budget (if such a set exists) such that, after closing these facilities, each resulting
component has size less than or equal to N .

In the end of this section, we formulate two more complex problems that aim to
take into considerations all the restrictions, including the risk and the vulnerability.

Problem 5. Besides the input graph and the data associated with the facilities,
we are given a budget B, a threshold P and two real numbers W and R. We have
the following constraints associated with the connected components resulted after
closing the facilities:

1. For any connected component X we have
∑

v∈X vulnerability(v) ≤ W . Infor-
mally, this constraint aims to avoid large groups formed by vulnerable people
(such as eldery, or immunosuppressed).

2. For any connected component X we have
∑

u,v∈X(max{risk(u), risk(v)} −
min{risk(u), risk(v)}) ≤ R. Informally, this constraint aims to avoid a con-
nected component that mixes “healthy” and “ill” people. Notice that if two
people have high risk (i.e., that are very likely to have COVID-19) or if two
people have very low risk, then max{risk(u), risk(v)}−min{risk(u), risk(v)}
is very close to 0.

The goal is to select a set of facilities such that, after removing the edges with
probability less than P , minimises the number of connected components that violate
any of the two above mentioned constraints.

The final problem that we propose in this section, is very similar to Problem 5
but aims to enforce that all the components resulted obey the restrictions. Nev-
ertheless, in this variant, we are not given a constraint on the budget. Otherwise,
if we are given a constraint on the budget and on the connected components, it is
NP-hard even to decide if a feasible solution exists (we obtain an instance of the
Knapsack problem that is NP-hard [8]).

Problem 6. The input is similar to Problem 5, except that we do not have a budget
B. The goal is to select a set of facilities of minimum cost (if such a set exists)
such that, after removing the edges with probability less than P , all the connected
components do not violate any of the two constraints defined in Problem 5.
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2.3 Hardness results

In this section we show that the problems introduced in Subsection 2.2 are NP-
hard. We show a complete proof only for Problem 1, since the NP-hardness proofs
for the other problems are similar.

Theorem 1. Problem 1 is NP-hard.

Proof. We show a simple reduction from the Vertex Cover problem which is a
classical NP-hard problem [8]. In the (decision version of the) Vertex Cover problem
the input is an undirected graph G = (V,E) and an integer k and the goal is to
decide, if exists, a subset V ′ ⊆ V such that |V ′| ≤ k and for any edge (a, b) ∈ E,
either a ∈ V ′ or b ∈ V ′ or both. Thus, given an instance of Vertex Cover, that is,
a graph G = (V,E) and an integer k, we construct an instance of Problem 1 as
follows.

1. The input graph G′ of Problem 1 has the same vertex set V .

2. The edge set is constructed as follows: for every edge (a, b) ∈ E, we set
p(a, b) = 1, otherwise we set p(a, b) = 0.

3. We let V 1 = ∅.

4. We let V 2 = {{v} | ∀v ∈ V }, while the cost c2 of selecting any set from V 2 is
1 and r1 is 0 (that is, all the edges that are incident to a selected vertex are
deleted).

5. The budget B = k.

Now, we show that the graph G = (V,E) has a vertex cover of size at most k
if and only if the maximum number of connected components in the corresponding
instance of Problem 1, after removing the edges (a, b) with p(a, b) = 0, is n.

First, given a vertex cover V ′, the solution of Problem 1 that creates n connected
components selects the set V̂ 2 = {{v′} | v′ ∈ V ′}, that is, we select the sets from
V 2 corresponding to the vertices in V ′. Since V ′ is a vertex cover, any edge is
incident to at least one vertex from V ′, thus p(a, b) = 0, ∀a, b ∈ V after selecting

V̂ 2.
Conversely, given a set V̂ 2, such that |V̂ 2| ≤ k, we construct the set V ′ =

{v′ | {v′} ∈ V̂ 2}. Since n connected components are created after selecting V̂ 2, we
know that p(a, b) = 0, ∀a, b ∈ V (otherwise, we have a connected component with
at least two vertices). Since p(a, b) = 0, ∀a, b ∈ V , we know that for any edge (a, b)

that had p(a, b) = 1, either {a} ∈ V̂ 2 or {b} ∈ V̂ 2. Thus, V ′ = {v′ | {v′} ∈ V̂ 2} is
a vertex cover of G, completing the proof.

Using a similar reduction, we can show that Problems 2, 3, 4, 5 and 6 are
NP-hard. Thus, we state the following corollary.

Corollary 1. Problems 2, 3, 4, 5 and 6 are NP-hard.
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3 The framework for modeling COVID-19

The framework presented in the previous section, although promising, has the fol-
lowing problem. The closure of a facility might not have the same effect for all
the people that are connected through that facility. Consider the following sim-
ple example: two siblings (who live in the same house) study at the same school.
Then, after closing the school, in reality the two siblings still have a large probabil-
ity to get in contact with each other. Thus, we introduce the following framework
which captures the aforementioned example and is also simpler than the framework
presented in Section 2.

Problem 7. The input consists of a bipartite graph G = (U ∪ V,E). The set U
represents the people and the set V represents the facilities. For each edge we have
associated a value t : U ×V → [0, 1] that represents the percentage of the time spent
by a person in that facility in a day. For example, if t(a, b) = 0.25, then person
a spends 6 hours (0.25 × 24 hours) in facility b. Each person has an associated
probability f : U → [0, 1] of being infected. Each facility has an associated closure
cost c : V → R+. Closing a facility v is equivalent to removing the edges incident
to v. Moreover, we are given a cost c′ : U → R+ of isolating people. Isolating a
subset of people U ′ is equivalent to removing the edges incident to all the vertices
in U ′. Moreover, we are given a total budget B for closing the facilities.

The risk of a facility is informally the weighted (using the probability of a person
being infected f as the weight) sum of the time spent by the people in that facility.
More precisely, R : V → R+ is:

R(v) =
∑

u∈U :(u,v)∈E
f(u) · t(u, v)

The risk of a person r : U → R+ (not to be confused with f) is defined as the
weighted sum spent by a person in the facilities he visits (weighted using the risks
of the facility). Formally:

r(u) =
∑

v∈V :(u,v)∈E
R(v) · t(u, v)

We define r(U) the vector in R|U |, that has in each component the risk of a
person.

The goal is to select a set of facilities of total cost at most B such that a given
function F : r(U) → R is minimized. In this paper we study the case when F is the
�1 metric. In other words, we aim to optimize the total risk of the people.

We show that Problem 7 is NP-hard even in an extremely restricted version in
which there is only one person associated with each facility. Nevertheless, notice
that unlike Problem 6, Problem 7 admits a trivial feasible solution. Thus, in
Section 4 we tackle the problem via a heuristic algorithm and show that it gives
promising results.
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Theorem 2. Problem 7 is NP-hard in the case F = �1.

Proof. We prove NP-hardness of Problem 7 via a reduction from the Subset Sum
problem, defined as follows. In the Subset Sum problem the input is a set S of
integers and an integer B and the goal is to decide if there exists a subset of
integers from S whose sum is precisely B. The Subset Sum problem is a famous
NP-hard problem [8]. Given an instance of the Subset Sum problem, we create an
instance of Problem 7 as follows.

For each x ∈ S, we create a facility v of cost c(v) = x. Thus, V includes these
v vertices. The bipartite graph G = (U ∪ V,E) with vertex classes U and V is
a balanced one, that is, |U | = |V |, and the edge set of G is a perfect matching
M = E. In other words, every vertex of G has degree one.

For every u ∈ U we let f(u) = c(v)
maxw∈V c(w) and t(u, v) = 1, where v is the only

neighbor of u, that is (u, v) ∈ M . Thus, for each pair person/facility (u, v) ∈ M
we have R(v) = r(u) = f(u). Note that if a set of facilities (some subset of V ) is
closed with cost X, then the total risk is

∑
w∈V c(w)−X

maxw∈V c(w)
.

The above shows that the total risk is∑
w∈V c(w)−B

maxw∈V c(w)

if and only if there exist a subset of numbers from S that have sum precisely B.

Thus, Problem 7 is NP-hard in the case F = �1.

4 The algorithm

In this section we provide a heuristic (approximation) algorithm for Problem 7. We
test our algorithm in Section 5 and show that it gives promising results.

Our algorithm (presented in Algorithm 1) sorts the list of people and the fa-
cilities according to their efficiency (the cost of isolating/closing a person/facility
divided by the amount of risk the people/facilities have). Then, the algorithm
aims to find the optimum division of the available budget between isolating people
and closing facilities. According to our experiments (see Section 5) there is not an
obvious correlation between the optimal value of the division of the budget (i.e.,
variable Split in Algorithm 1) and the minimum total risk. Thus, we need to iterate
over all values of Split in order to find a good solution. Of course, since there are
infinitely many numbers between 0 and 1, we cannot iterate over all possible values.
Choosing a larger increment improves the running time but reduces the accuracy
of the solution.
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1. Define the efficiency of a facility v as

e(v) =
c(v)

R(v)

2. Define the efficiency of isolating a person u as

e′(u) =
c′(u)
f(u)

3. Sort the sequence of values e and e′ in increasing order.

4. MinRisk = ∞

5. For every value of Split between 1 and 100 (in increments of 1) do:

a) Isolate people in the order given by e′ until a budget of B · 1
Split

is reached.

b) Close the facilities in the order given by e until the budget B is
reached.

c) Let RSplit be the total risk of the population according to this
solution. If RSplit < MinRisk then we update the value of
MinRisk and store the current solution.

6. Output: MinRisk and the corresponding set of people and facilities
that have to be isolated/closed.

Algorithm 1: A heuristic algorithm for Problem 7.

5 Experiments

5.1 Data generation

In this subsection we describe how we generated our data.

First our data generator allows two parameters as input that determine the
number of facilities and the maximum size of a facility. The size of the facilities
(i.e., how many people visit that facility in a day) is drawn according to a power
law distribution with exponent α (in our experiments α varies between 0.8 and
1.3). We also select an average number of daily activities for a person (i.e., how
many facilities a person visits during one day). In our experiments the average
number of activities is set between 3 and 8). Then, we set the number of people
in a country to be the sum of all the facilities divided by the average number of
facilities a person visits during one day.
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In Figure 1 we show an example of the distribution of the size of the facilities
for 1000 facilities each having a size between 10 and 10000.

Figure 1: The size of 1000 facilities (i.e. daily number of people that visit that
facility). Each facility has at least 10 and at most 10000 daily visitors. The number
of visitors is drawn from a power law distribution with α = 1.1.

For each facility v we select size(v) people that will visit that facility uniformly
at random from the population, where size(v) is the size of facility v that was
generated previously using the power law distribution. The number of activities
performed daily by each person form a Poisson distribution (see Figure 2 for an
example).

We now show how we generate the weights on the edges. For each person, we
choose the time spent in each facility using an exponential distribution.

The probability that a person i carries the virus, i.e., f(i), is also drawn from
a power law distribution with exponent α2. One important thing to notice is that

Figure 2: The distribution of number of daily activities for a population of 19 573
people that have on average 5 daily activities.
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α2 influences significantly the risk of the whole population to get infected. More
precisely, if α2 is large (that is, there are few people with high risk of carrying
the virus), the risk of infection for the other people is relatively low. In Figure 3
we show the risk associated to the people (calculated as shown in Problem 7) for
the values of α2 = 4 and α2 = 2. This observation motivates us in the design of
algorithm by isolating first the persons with very high risk.

(a) The case of α2 = 2 (b) The case of α2 = 4

Figure 3: Comparison of the risk of the population to get infected for α2 = 2 and
α2 = 4

Finally, we have to set the cost of isolating people and the cost of closing facili-
ties. We choose the cost of isolating a person as a fraction of total budget available
(this fraction can also be set as an input parameter in our generator). The cost
of closing a facility of size s is sx, where x is a random variable drawn according
to a Gaussian distribution with mean μ and variance σ (in our tests we vary the
μ between 1.1 and 1.2 and σ between 0.3 and 0.5). Finally, the budget is also an
input parameter in the generator and we design it as a fraction of the total cost of
closing the facilities, generally, between 1% and 30%.

5.2 Tests

We carried out tests for a population of around 30 000 people. This population
is achieved by varying the parameters in our model as: the number of facilities
(between 100 and 1 000), the average number of daily activities (between 3 and 8)
and the size of each facility (between 4 and 10 000). For each set of parameters we
carried out 5 tests and we chose the average risk produced by our algorithm over
these 5 tests.

The dataset size is the maximum that our hardware can handle. Nevertheless,
we argue that our experiments scale to a larger population. In Figure 4 we show
how the risk changes if we change the number of facilities and the size of each
facility: the risk has a decreasing trend as the size of our population increases, thus
we believe that our algorithm is even better for larger scale instances.

Next, we show how the split of the budget between isolating people and closing
facilities influences the total risk. In our tests we have 500 facilities between 4 and
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1 000 people, each person performs on average 4 activities per day and we have
α = 1.1, α2 = 2. The cost of the exponent of the random variable that determines
the cost of closing the facilities is drawn from a normal distribution with μ = 1.1
and σ = 0.4 (Figure 5a and Figure 6a), σ = 0.5 (Figure 5b and Figure 6b). The
budget is 10% of the cost of closing all facilities in Figure 5 and 1% in Figure 6.
This budget suffices to isolate 10% of the population, respectively 1%.

Notice that with a budget of only 1% from the cost of closing all facilities, we
are able to lower the risk to less than 20% of the original risk (Figure 6b).

Finally, we tested how does the risk decrease if we take actions quickly. More
precisely, we vary α2 which is the power law exponent that determines the percent-
age of people that are likely to be already infected. However, we did not notice any
major influence of this factor in the total risk if the infection proportion is drawn
according to a power law distribution.

Our algorithm was implemented in Python and the tests were carried out on a
2013 MacBook Pro with 2.4 GHz Quad-Core Intel Core i7, and 8GB RAM. The
code used for testing and generating data is available on GitHub [19].

(a) The horizontal axis represents the num-
ber of facilities, while the vertical axis rep-
resents the risk improvement. The size of
each facility is between 4 and 1 000.

(b) The horizontal axis represents the size
of each facility, while the vertical axis repre-
sents the risk improvement. The number of
facilities is 500 and the average number of
daily activities performed by a person is 4.

Figure 4: The improvement in the population risk (i.e., the risk of the population
after our algorithm, divided by the risk before the run of our algorithm) compared
with the size of the instance. The average number of daily activities performed
by a person is 4. The budget allocated is 5% of the amount necessary to close
all facilities. With this budget we are able to quarantine 5% of the population.
Then, we have α = 1.1 and α2 = 2. Observe that the improvement is bigger as the
population increases.
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(a) A 10% of the total cost of closing the
facilities and σ = 0.4

(b) A 10% of the total cost of closing the
facilities and σ = 0.5

Figure 5: On the x axis is the percentage of the total budget allocated to isolating
people. On the y axis there is the ratio of the risks before/after running the
algorithm.

(a) A 1% of the total cost of closing the fa-
cilities and σ = 0.4

(b) A 1% of the total cost of closing the fa-
cilities and σ = 0.5

Figure 6: On the x axis is the percentage of the total budget allocated to isolating
people. On the y axis there is the ratio of the risks before/after running the
algorithm.

6 Conclusions and future work

In this paper we presented a model and an algorithm that aims to help authorities
to take more efficient decisions in the fight with COVID-19. Naturally, the most
stringent open problem is to test and validate the model and the algorithm on real
data. People have a huge mobility nowadays and it is impossible to create a model
which is fully accurate. Nevertheless, based on our tests we believe that our model
is capable of capturing the most important features of the current situation.
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Also, a natural open problem is to tune the input parameters: the probabilities
p in the input graph, the cost of closing facilities and isolating people c and c′ and
the contagion risk associated with each person.

Since the appearance of vaccines the strategy for tackling COVID has changed
significantly. Nevertheless, in some countries, restrictions are still in place. Thus,
we are hopeful that our model will give the authorities some insight in taking the
best decisions. Moreover, as we can see from our experiments, even with a very
small budget (sometimes as low as 1% of the total cost necessary to lock down
the entire economy), the risk of infection can be decreased significantly. Thus,
we strongly believe that, with wise decisions, it is possible to stop the spread of
COVID-19 and future pandemics without an economic collapse.
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