Asymptotic behavior of solutions to difference equations in Banach spaces

Migda Janusz: Asymptotic behavior of solutions to difference equations in Banach spaces. (2021)

[thumbnail of ejqtde_2021_088.pdf] Teljes mű
ejqtde_2021_088.pdf

Download (437kB)

Abstract

We investigate the asymptotic properties of solutions to higher order nonlinear difference equations in Banach spaces. We introduce a new technique based on a vector version of discrete L’Hospital’s rule, remainder operator, and the regional topology on the space of all sequences on a given Banach space. We establish sufficient conditions for the existence of solutions with prescribed asymptotic behavior. Moreover, we are dealing with the problem of approximation of solutions. Our technique allows us to control the degree of approximation of solutions.

Item Type: Journal
Publication full: Electronic journal of qualitative theory of differential equations
Date: 2021
Number: 88
ISSN: 1417-3875
Number of Pages: 17
Language: English
Place of Publication: Szeged
DOI: 10.14232/ejqtde.2021.1.88
Uncontrolled Keywords: Differenciálegyenlet, Banach tér
Additional Information: Bibliogr.: p. 16-17. ; összefoglalás angol nyelven
Subjects: 01. Natural sciences
01. Natural sciences > 01.01. Mathematics
Date Deposited: 2022. May. 23. 12:50
Last Modified: 2022. May. 23. 13:15
URI: http://acta.bibl.u-szeged.hu/id/eprint/75809

Actions (login required)

View Item View Item