Weisz Ferenc: Lebesgue points and Cesàro summability of higher dimensional Fourier series over a cone. In: Acta scientiarum mathematicarum, (87) 3-4. pp. 505-515. (2021)
![]() |
Cikk, tanulmány, mű
math_087_numb_003-004_505-515.pdf Restricted to: SZTE network Download (198kB) |
Abstract
We introduce a new concept of Lebesgue points, the so-called ωLebesgue points, where ω > 0. As a generalization of the classical Lebesgue’s theorem, we prove that the Cesàro means σ a nf of the Fourier series of a multidimensional function f ∈ L1(T d ) converge to f at each ω-Lebesgue point (0 < ω < α) as n → ∞.
Item Type: | Article |
---|---|
Heading title: | Analysis |
Journal or Publication Title: | Acta scientiarum mathematicarum |
Date: | 2021 |
Volume: | 87 |
Number: | 3-4 |
ISSN: | 2064-8316 |
Page Range: | pp. 505-515 |
Language: | English |
Place of Publication: | Szeged |
Related URLs: | http://acta.bibl.u-szeged.hu/75796/ |
DOI: | 10.14232/actasm-021-614-3 |
Uncontrolled Keywords: | Fourier-sor, Lebesgue integrál, Analízis - matematikai |
Additional Information: | Bibliogr.: p. 513-515. ; összefoglalás angol nyelven |
Subjects: | 01. Natural sciences 01. Natural sciences > 01.01. Mathematics |
Date Deposited: | 2022. May. 24. 12:31 |
Last Modified: | 2022. May. 24. 13:02 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/75852 |
Actions (login required)
![]() |
View Item |