Lebesgue points and Cesàro summability of higher dimensional Fourier series over a cone

Weisz Ferenc: Lebesgue points and Cesàro summability of higher dimensional Fourier series over a cone. In: Acta scientiarum mathematicarum, (87) 3-4. pp. 505-515. (2021)

[thumbnail of math_087_numb_003-004_505-515.pdf] Cikk, tanulmány, mű
math_087_numb_003-004_505-515.pdf
Restricted to: SZTE network

Download (198kB)

Abstract

We introduce a new concept of Lebesgue points, the so-called ωLebesgue points, where ω > 0. As a generalization of the classical Lebesgue’s theorem, we prove that the Cesàro means σ a nf of the Fourier series of a multidimensional function f ∈ L1(T d ) converge to f at each ω-Lebesgue point (0 < ω < α) as n → ∞.

Item Type: Article
Heading title: Analysis
Journal or Publication Title: Acta scientiarum mathematicarum
Date: 2021
Volume: 87
Number: 3-4
ISSN: 2064-8316
Page Range: pp. 505-515
Language: English
Place of Publication: Szeged
Related URLs: http://acta.bibl.u-szeged.hu/75796/
DOI: 10.14232/actasm-021-614-3
Uncontrolled Keywords: Fourier-sor, Lebesgue integrál, Analízis - matematikai
Additional Information: Bibliogr.: p. 513-515. ; összefoglalás angol nyelven
Subjects: 01. Natural sciences
01. Natural sciences > 01.01. Mathematics
Date Deposited: 2022. May. 24. 12:31
Last Modified: 2022. May. 24. 13:02
URI: http://acta.bibl.u-szeged.hu/id/eprint/75852

Actions (login required)

View Item View Item