Twitter bot detection using deep learning

Kenyeres Ádám and Kovács György: Twitter bot detection using deep learning. In: Magyar Számítógépes Nyelvészeti Konferencia, (18). pp. 257-269. (2022)

[thumbnail of msznykonf_018_257-269.pdf] Cikk, tanulmány, mű
msznykonf_018_257-269.pdf

Download (696kB)

Abstract

Social media platforms have revolutionized how people interact with each other and how people gain information. However, social media platforms such as Twitter and Facebook quickly became the platform for public manipulation and spreading or amplifying political or ideological misinformation. Although malicious content can be shared by individuals, today millions of individual and coordinated automated accounts exist, also called bots which share hate, spread misinformation and manipulate public opinion without any human intervention. The work presented in this paper aims at designing and implementing deep learning approaches that successfully identify social media bots. Moreover we show that deep learning models can yield an accuracy of 0.9 on the PAN 2019 Bots and Gender Profiling dataset. In addition, the findings of this work also show that pre-trained models will be able to improve the accuracy of deep learning models and compete with Classical Machine Learning methods even on limited dataset.

Item Type: Article
Heading title: Alkalmazások
Journal or Publication Title: Magyar Számítógépes Nyelvészeti Konferencia
Date: 2022
Volume: 18
ISBN: 978-963-306-848-9
Page Range: pp. 257-269
Language: English
Place of Publication: Szeged
Event Title: Magyar számítógépes nyelvészeti konferencia (18.) (2022) (Szeged)
Related URLs: http://acta.bibl.u-szeged.hu/75797/
Uncontrolled Keywords: Nyelvészet - számítógép alkalmazása, Média - közösségi
Additional Information: Bibliogr.: p. 267-269. és a lábjegyzetekben ; ill. ; összefoglalás angol nyelven
Subjects: 01. Natural sciences
01. Natural sciences > 01.02. Computer and information sciences
06. Humanities
06. Humanities > 06.02. Languages and Literature
Date Deposited: 2022. May. 25. 09:59
Last Modified: 2022. May. 25. 10:01
URI: http://acta.bibl.u-szeged.hu/id/eprint/75879

Actions (login required)

View Item View Item