Nanostructured Photocatalysts Prepared by Atomic Layer Deposition

Imre Miklós Szilágyi ${ }^{1}$, László Bakos ${ }^{1}$, Dániel Karajz ${ }^{1}$, Vincent Otieno Odhiambo ${ }^{1}$, Krisztina László ${ }^{2}$, Zoltán Hórvölgyi ${ }^{2}$, Klára Hernádi ${ }^{3}$, Zoltán Erdélyi ${ }^{4}$, Bence Parditka ${ }^{4}$
${ }^{1}$ Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Hungary
${ }^{2}$ Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Hungary
${ }^{3}$ Department of Applied and Environmental Chemistry, University of Szeged, Hungary
${ }^{4}$ Department of Solid State Physics, University of Debrecen, Hungary

In the lecture several examples will be shown about how various nanostructured photocatalysts can be obtained by atomic layer deposition (ALD), based on our own experience. The advantage and disadvantage of ALD films on the photocatalytic activity will be discussed.

By combining electrospinning and ALD, Vis or UV active photocatalysts were prepared, e.g. $\mathrm{WO}_{3} / \mathrm{TiO}_{2}, \mathrm{ZnO} / \mathrm{TiO}_{2}$ and $\mathrm{TiO}_{2} / \mathrm{ZnO}$ core/shell nanofibers, TiO_{2} nanotubes. By using sol-gel and ALD, $\mathrm{SiO}_{2} / \mathrm{TiO}_{2}$ core/shell photocatalytic nanoparticles were obtained. Photocatalysts based on biological substrates were also manufactured by ALD, e.g. TiO_{2} coated lotus leaves with both superhydrophobic and photocatalytic activities. C_{60}, graphene oxide, polymer and carbon aerogels, carbon nanospheres, PMMA nanoparticles coated with ALD $\mathrm{ZnO}, \mathrm{TiO} 2$ and Al 2 O 3 oxide layers and particles are examples for carbon and polymer nanostructure based photocatalysts.

On the previously mentioned substrates, amorphous and crystalline $\mathrm{TiO}_{2}, \mathrm{ZnO}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$ thin films were grown by ALD at various temperatures. While TiO_{2} is considered to have photocatalytic activity only in the crystalline state; unexpectedly, we observed that when TiO_{2} was deposited in amorphous form on organic and biological substrates, i.e. lotus leaf, $\mathrm{C}_{60}-\mathrm{OH}, \mathrm{GO}$, graphene oxide or PMMA, the amorphous TiO_{2} layer clearly exhibited photocatalytic property.

