Novel 3D In₂S₃/In₂O₃ Heterostructures for Efficient Photocatalytic Application

Xinyong Li

State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.

Novel 3D In₂S₃/In₂O₃ heterostructures comprised of 3D In₂O₃ microflowers and In₂S₃ nanoflakes were synthesized via a facile hydrothermal process followed by an in situ anion exchange reaction. In the In₂S₃/In₂O₃ heterostructures, the In₂S₃ nanoflakes were in-situ generated and uniformly assembled on In₂O₃ microflowers. The microstructures, optical properties, oxygen vacancy concentration, and photoreactivity of the heterostructures could be tuned by adjusting the amount of sulfide source. The effect of In₂S₃-nanoflakes modification on the oxygen vacancy concentration, optical properties, charge carrier separation, and charge carrier lifetime of In₂O₃ were investigated systematically. The catalytic activity of the proposed heterostructures for degradation of gaseous ortho-dichlorobenzene (o-DCB, a representative chlorinated volatile organic compounds) was higher than that of either unmodified In_2O_3 or TiO₂ (P25). Meanwhile, oxygen vacancies, systematically explored by Raman, X-ray photoelectron spectroscopy (XPS), and low-temperature electron spin resonance (ESR) spectroscopy, were demonstrated to have a two-side effect on the photocatalytic performance. Particularly, the main reaction products including o-benzoquinone type species, phenolate species, formates, acetates, and maleates were verified with in situ FTIR spectroscopy. Additionally, ESR examination confirmed that •OH and $\cdot O_2^-$ were the predominant reactive oxygen species involved in the degradation of gaseous o–DCB. The current research provides new insight into utilizing In-based heterostructures as promising and efficient visible-spectrum-responsive catalysts for the removal of harmful chlorinated volatile organic compounds.