The Role of Alcoholic Sacrificial Agents in Photo-Catalysis: Is it Always Trivial?

Krishnamoorthy Sathiyan,¹ Ronen Bar-Ziv,² Dan Meyerstein,^{1,3} and Tomer Zidki^{1*}

¹ Department of Chemical Sciences, The Center for Radical Reactions and the Schlesinger Family Center for Compact Accelerators, Radiation Sources and Applications, Ariel University, Ariel, Israel.

² Department of Chemistry, Nuclear Research Centre Negev, Beer-Sheva, Israel.
³ Chemistry Department, Ben-Gurion University, Beer-Sheva, Israel.

Photo-catalytic hydrogen production is proposed as a sustainable energy source. Simultaneous reduction and oxidation of water is a complex multistep reaction with high over potential. Photo-catalytic processes involving semiconductors transfer electrons from the conduction band to the valence band. Sacrificial substrates that react with the photo-chemically formed holes are often used to study the mechanism of H₂ production, as they scavenge the holes and hinder the charge carrier recombination. The desired sacrificial agent is one forming a radical that is a fairly strong reducing agent and that its oxidized form is not a good electron acceptor that might suppress the HER. Methanol was found to fulfil both these requirements in the TiO₂@(M⁰-NPs), M = Au or Pt, system. This study provides general guidelines for choosing an appropriate sacrificial substrate and helps to explain the variance in the performance of alcohol scavengers-based photo-catalytic systems.