Exploring the Mechanisms of Nitrogen Adsorption and Activation on the 2H/1T Mixed-phase Ultrathin Mo_{1-x}W_xS₂ Nanosheets for Boosting Nitrogen Photosynthesis

Jiangzhou Qin, Xia Hu, Baojun Liu*

College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China E-mail: jbliu@gzu.edu.cn

Solar-driven conversion of nitrogen (N₂) to ammonia (NH₃) is highly appealing yet still in its infancy as low photocatalytic efficiency, and unclear adsorption and activation mechanisms of N₂. Based on the two key points, an ultrathin alloyed $Mo_{1-x}W_xS_2$ nanosheets with tunable 2H/1T phase ratios was proposed to boost photoreduction N₂ efficiency by simultaneously promoting N₂ adsorption and activation, and moreover, the alloyed $Mo_{1-x}W_xS_2$ nanosheets for the ratio of 2H/1T = 1:1 can reach about 111 µmol g_{cat}⁻¹ h⁻¹ under visible light, displaying 3.7 (or 3)-fold higher than that of pristine MoS₂ (or WS₂). With the aid of density functional theory (DFT) calculations and X-ray absorption near-edge fine structure (XANES) techniques, the coordination chemistry and adsorption behavior of N₂ over the crystal interface were investigated during the N₂ fixation process. The results show that the interface distortion with W doping leads to the largest adsorption energy (-2.05 eV) and higher electron density state in W 5d orbitals, which can not only polarize the adsorbed N₂ molecules for better activation but also promote the electron transfer to them for greatly enhancing photocatalytic efficiency. This work proposes a new insight into the adsorption and activation mechanism of N₂ on ammonia synthesis.

