Mo-BiVO₄ / Fe₂TiO₅ Heterojunction Photoanodes for Improving Photoelectrochemical Water Splitting Performance

Zoherh Masoumi¹, Meysam Tayebi¹, Byeong-Kyu Lee^{1,*}

¹Department of Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan 44610, Republic of Korea (E-mail: <u>bklee@ulsan.ac.kr</u>)

Photoelectrochemical (PEC) water splitting can be one of the most promising approaches for renewable and sustainable energy production of hydrogen. Bismuth vanadate (BiVO4: BVO) is a promising n-type semiconductor material that can absorb visible light (band-gap energy: 2.4 eV). BiVO₄ is composed of cheap, non-toxic, and earth-abundant elements and can be also easily produced on a large scale. Recently, Fe₂TiO₅ has been demonstrated to be able to act as a proper co-catalyst due to its relative positive flat band potential and its intrinsic n-type semiconductor behavior. In this study we built heterojunction photoanodes of metal doped-BiVO₄ combined with Fe₂TiO₅. Then this study investigated the PEC performance of the fabricated photoanodes of different layers of Mo doped BiVO₄ (Mo-BVO), as conductor substrate, and deposited with the Fe₂TiO₅ prepared via a hydrothermal method. After constructing the heterojunction of Fe₂TiO₅ with pure BVO and 2% Mo-BVO, the onset potential shifted significantly to a lower value (0.2 V vs. Ag/AgCl) of the applied voltage and the photocurrent density greatly increased. The 4 layer-2% Mo-BVO/Fe₂TiO₅ electrode shows the photocurrent density of 1.9 mA.cm⁻² at 1.23 V vs. Ag/AgCl under 150 W Xe lamp in Na₂SO₄ as the electrolyte (0.5 M, pH=7), which is 20 and 8 times higher that of the pure BVO and BVO/Fe₂TiO₅, respectively. Combined analyses of Mott-Schottky plots and electrochemical impedance spectroscopy (EIS) confirmed that the heterojunction of layered Mo-BVO with Fe₂TiO₅ increased the donor concentration (N_D), decreased the space charge layer (W_{SCL}), and reduced the flat band potential (V_{Fb}) of the pure BVO and pure Fe₂TiO₅, thereby greatly enhancing the PEC performances of the photoanodes.

Acknowledgement:

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST: Ministry of Science and ICT) (No. 2019R1A2C2085250).