BENEFICIAL REPOLARISATION-NORMALIZING EFFECT OF A POLYUNSATURATED FATTY ACID, DHA IN TRANSGENIC LONG QT TYPE 2 RABBIT MODEL

<u>Tibor Hornyik</u>^{1,3,4}, Alessandro Castiglione^{3,4,5}, Eike M. Wülfers⁶, Lucilla Giammarino^{4,5}, Iask Edler⁷, Jessica J. Jowais⁸, Marina Rieder^{3,4,5}, Stefanie Perez-Feliz^{3,6}, Zsuzsanna Bősze⁹, András Varró^{1,2}, Michael Brunner^{3,10}, Sara I. Liin⁷, Hans Peter Larsson⁸, Katja E. Odening^{3,4,5} and István Baczkó¹

¹Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary; ²ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, Szeged, Hungary;

³Department of Cardiology and Angiology I, University Heart Center Freiburg, Medical Faculty, University of Freiburg, Freiburg, Germany;

⁴Department of Translational Cardiology/Electrophysiology, Institute of Physiology, University of Bern, Bern, Switzerland;

⁵Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland;

⁶Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg—Bad Krozingen, Medical Faculty, University of Freiburg, Freiburg, Germany;

⁷Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; ⁸Department of Physiology and Biophysics, University of Miami, Miami, FL, USA;

⁹Animal Biotechnology Department, NARIC Agricultural Biotechnology Institute, Gödöllő, Hungary; and

¹⁰Department of Cardiology and Medical Intensive Care, St. Josefskrankenhaus, Freiburg, Germany

Current therapies of congenital long QT syndrome (LQTS) fail to prevent arrhythmic events in up to 40% of the patients. Docosahexaenoic acid (DHA), a polyunsaturated fatty acid activates the repolarizing I_{Ks} current if both α - (KvLQT1) and β (KCNE1) –subunits to I_{Ks} are functionally intact.

The potential beneficial (repolarisation-normalizing) effects of DHA in transgenic LQT1 (KCNQ1-Y315S, loss of I_{Ks}), LQT2 (HERG-G628S, loss of I_{Kr}), LQT5 (KCNE1-G52R, decreased I_{Ks}) and LQT2-5 (loss of I_{Kr} /decreased I_{Ks}) rabbits were investigated.

In vivo telemetric ECG analyses in wild-type (WT), LQT1, LQT2, LQT5 and LQT2-5 rabbits were performed at baseline and after 10μ M/kg DHA i.m. to assess changes in heart rate corrected QT (QTc) and short term variability of QT (STV_{QT}). *Ex vivo* monophasic action potential measurements in Langendorff-perfused hearts were carried out to investigate DHA-induced (20 μ M) changes in action potential duration (APD₇₅) and action potential (AP) triangulation (APD₉₀-APD₃₀).

Baseline QTc (ms±SEM) was significantly longer in LQT1, LQT2 and LQT2-5 than in WT (166±3.8, 165±3.7, and 167±12.1 vs. 144±14.3; p<0.05). Baseline STV_{QT} (ms±SEM) was increased only in LQT2. *In vivo*, DHA shortened QTc through activation of I_{Ks} only in WT (-12.0±1.9, p<0.01) and in LQT2 (-20.7±1.7, p<0.01). Furthermore, in LQT2, DHA normalized STV_{QT}. Similarly, *ex vivo*, DHA shortened APD₇₅ (ms±SEM) only in WT and in LQT2 (-12.3±2.2 and -18.1±3.5, p<0.01). Moreover, AP triangulation was decreased by DHA in LQT2 (-5.8±1.8, p<0.01). Importantly, DHA didn't increase the spatial dispersion of repolarisation (QT and APD₇₅ dispersion).

DHA exerts a beneficial repolarisation-normalizing effect through activation of I_{Ks} in LQT2 with intact α and β -subunits to I_{Ks} . DHA could thus represent a novel therapeutic tool in LQT2 syndrome.

Keywords: long QT syndrome, impaired repolarization reserve, transgenic LQT rabbit models, polyunsaturated fatty acid, docosahexaenoic acid (DHA)