METHANE-ENRICHED CUSTODIOL PRESERVATION SOLUTION IMPROVES GRAFT FUNCTION IN EXPERIMENTAL MODEL OF HETEROTOPIC HEART TRANSPLANTATION

<u>Kálmán Benke^{1,2}</u>, Roland Stengl¹, Mihály Ruppert¹, Alex Ali Sayour¹, Dávid Kurszán Jász³, Ágnes Lilla Szilágyi³, Eszter Tuboly³, Bálint Baráth³ Anett Roxána Márton³, Petra Hartmann³, Gábor Szabó², Béla Merkely¹, Mihály Boros³, Tamás Radovits¹

¹Heart and Vascular Center, Semmelweis University, Hungary ²Department of Cardiac Surgery, University of Halle, Germany ³Institute of Surgical Research, University of Szeged, Hungary

The key goal of cold storage is to maintain cell viability for a prolonged time during solid organ transplantation. Methane (CH₄) has been recognized as novel therapeutic gas exerting antiinflammatory effects in ischemia-reperfusion (IR) injuries. We aimed to investigate whether cold storage of donor hearts in CH₄-enriched Custodiol preservation solution could protect against IR and preserve myocardial function in a rat model of heterotopic heart transplantation (HTX).

The hearts of donor Lewis rats were stored for 60 minutes in cold histidine-tryptophanketoglutarate (Custodiol [CS]) or CH4-saturated CS solution (CS-CH4) (n = 12 each). Standard heterotopic HTX was performed, and 60 minutes later, the left ventricular (LV) pressure-volume relationships LV systolic pressure (LVSP), systolic pressure increment (dP/dtmax), diastolic pressure decrement, and coronary blood flow (CBF) were measured. Tissue samples were taken to detect proinflammatory parameters, structural damage (by light microscopy), endoplasmic reticulum (ER) stress, and apoptosis markers, whereas mitochondrial functional changes were analyzed by high-resolution respirometry.

LV contractility, active relaxation and CBF values were significantly (p < 0.05) improved in CS-CH₄ grafts as compared to the CS group. CS-CH₄ storage significantly reduced the transcription of proapoptotic proteins and Bcl2/Bax ratios as compared to CS grafts. Increased mitochondrial oxidative phosphorylation, reduced leak respiration and cytochrome c release were demonstrated in response to CS-CH₄ preservation.

The addition of CH4 during 1 hour of cold storage improved early in vitro graft function and reduced mitochondrial dysfunction and activation of inflammation. Evidence shows that CH4 reduced ER stress-linked proapoptotic signaling.

Keywords: Cardioprotection, Heart transplantation, experimental cardiac surgery, ischemia/reperfusion injury, graft preservation