
Introduction

Rice is an important agricultural food for more than half 
of the world's population (Todaka et al. 2012). It plays an 
important role in the world's food cycle, by supplying the 
main food for more than 50% of the world's population. 
Since over 90% of rice is produced and consumed in Asia, 
it is an important crop in this continent (Wang et al. 2013).

The high genetic diversity among physiological and 
morphological traits in different populations, their cor-
relation with grain yield, and high heritability can be used 
as selection criteria along with new molecular methods 
to select the superior genotypes (Pierre et al. 2010). To-
day, molecular markers are used as an important tool 
for crop breeding (Shamsabadi et al. 2021; Shirmoham-
madli et al. 2018). There are several reports on the use 
of SSR molecular markers to study the genetic diversity 
of drought-tolerant rice cultivars (Giasi Oskoei 2014; 
Sarayloo 2015; Sabouri et al. 2022).

Chuang et al. (2011) studied 32 microsatellite mark-
ers and 36 rice cultivars from different countries for the 
polymorphic analysis, and observed 306 alleles at 32 loci. 
The number of alleles per locus varied from 3 to 21. The 

genetic diversity of 106 rice genotypes was analyzed by 
microsatellite markers. SSR markers showed the highest 
polymorphic levels of 80% to 100%. The microsatellite 
detected 181 alleles for 37 SSR primers. The number of 
alleles per gene locus varied from 2 to 13. The PIC value 
ranged from 0.45 to 0.81 (Sarma and Rathi 2012). The 
association analysis of 128 rice genotypes and 11 agro-
nomic traits was studied over two years. The population 
was analyzed using 125 SSR markers covering the entire 
genome. In total, 16 markers showed significant associa-
tions with different traits, and the researchers suggested 
that the association analysis was efficient for investigating 
different rice genotypes in breeding programs (Zhou et al. 
2012). In a study on the genetic diversity among different 
rice genotypes using morphological characteristics of 
SSR markers, Basmati cultivars were differentiated from 
non-Basmati cultivars (Das et al. 2012). 

Segmentation algorithms and decision tree (Bramer 
2007; Kantardzic 2003) were practical classifications that 
often occur in everyday life and include the division of 
objects, so that a unique number, called "class", is assigned 
to each of these objects. The uniqueness means that each 
object should be assigned exactly to a class. The decision 
tree is an approach widely used for classification and pre-
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diction. It is an effective way of generating classes from 
high-speed datasets. The decision tree works by building 
a tree of rules. New items can be started by simple steps 
from each decision node, starting at the root node and 
ending at the leaf node. The training and testing method 
is used to construct a class that divides the available da-
taset into training and test sets. Frate et al. (2003) used 
artificial neural networks with multilayer perceptron 
structure with two hidden layers and sigmoid operator 
function to estimate soil moisture and found that neural 
networks were suitable tools to estimate the soil moisture. 
Pachepsky et al. (1996) reported neural network models 
could estimate soil water storage capacity with better ac-
curacy and lower error by investigating neural network 
and regression models in 230 soil samples.

The present study aimed to investigate the genetic 
diversity between rice genotypes and effective markers 
on rice traits and predict the response of the genotypes 
to deficit irrigation according to molecular data via the 
artificial intelligence.

Material and Methods

Phenotypic evaluations
In this section, 102 rice genotypes (Table 1) were studied in 
3-kg pots under flooding and deficit irrigation at Gonbad 
Kavous University Greenhouse in three replications in 
2017-2018. The deficit irrigation was applied as intermit-
tent irrigation for 10 days from the maximum tillering 
stage. The plant height (PH), plant weight (PLW), number 
of fertile panicles (NFT), number of infertile panicles 
(NIFT), total panicle weight (PAW), main panicle length 
(PL), panicle extrusion (PE), flag leaf length (FLL), flag leaf 
width (FLW), number of primary panicles (NPB), number 
of filled grains (NFG), number of unfilled grains (NUFG), 
filled grain weight (FGW), leaf weight (LW), and shoot 
diameter (SD) were recorded. The genotypes' responses to 
stress were evaluated after applying the stress, and then 
genotypes' scores were determined for drought tolerance 
based on a method by Loresto and Chang (1981) according 
to Table 2. for each genotype.

The two selection indices including STI (Fernandez 
1992) and TOL (Rosielle and Hambline 1981) were calcu-
lated based on grain yield under control and water stress 
conditions according to the following formulae:

STI = (FGWs × FGWp)/(FGWmp)2

TOL = FGWp - FGWs

No. Genotype No. Genotype 

1 IRRI 133 52 IR13L137
2 IR 09L324 53 CT 18614-4-1-2-3-2
3 IR 11A506 54 IR 64
4 IRRI 153 55 IR12L356
5 BP 11820-5F-KN-10-2 56 HHZ 15-SAL13-Y1
6 HHZ 2-SUB2-DT1-DT1 57 HHZ 26-SAL12-Y1-Y1
7 IR14L248 58 IR12L369
8 IR14L110 59 HHZ 3-SAL6-Y1-Y1
9 IR13L400 60 HHZ 1-DT3-Y1-Y1
10 IRBLKH-K3 61 HHZ 4-DT6-LI2-LI1
11 IR 10A199 62 IR14L121
12 HHZ 4-SAL12-LI1-LI1 63 IRBLT-K59
13 HHZ 22-Y3-DT1-Y1 64 IR 11N121
14 IR13L406 65 HHZ 6-DT1-LI1-LI1
15 HHZ 1-DT7-LI2-LI1 66 IR 11C123
16 IR 10A237 67 IR08L217
17 IR 11A581 68 IR10A121
18 IR 10A314 69 IR14L256
19 HHZ 4-DT3-Y1-Y1 70 IR12L357
20 IR 11A501 71 HHZ 18-Y3-Y1-Y1
21 IR 10F221 72 HHZ 24-DT11-LI1-LI1
22 HHZ 21-SAL13-Y1-Y1 73 IR14L238
23 IR 09N251 74 IR 11N137
24 HHZ 23-DT16-DT1-DT1 75 HHZ 3-SAL13-Y2-DT1
25 IRRI 104 76 IR13L268
26 IR14L101 77 IR 09N127
27 IR12L353 78 IR14L260
28 HHZ 3-SAL4-Y1-Y1 79 IR 09L204
29 SAKHA 105 80 IR06A145
30 HHZ 21-Y4-Y2-Y1 81 IR 10A227
31 IR 11A410 82 IRBLK-KU
32 IR14L240 83 HHZ 4-SAL5-LI1-LI1
33 IR14L247 84 IR 05A272
34 HHZ 15-SAL13-Y3 85 IRRI 103
35 IR10L139 86 IRRI 146
36 B 40 87 IRRI 154
37 IR13L397 88 IRBLZT-IR56
38 IR12L201 89 HHZ 10-DT8-DT1-DT1
39 IR13F589 90 HHZ 14-SAL19-Y1
40 IR13F228 91 HHZ 15-DT7-SAL2
41 IRRI 132 92 IR 04A216
42 IR14L160 93 IRBLZ5-CA[CO]
43 HHZ 10-DT5-LI1-LI1 94 HHZ 16-SAL13-LI1-LI1
44 IRBLSH-S 95 IR 09L324
45 IR12L159 96 IRBLSH-IS
46 B11598C-TB-2-1-B-7 97 HHZ 1-DT4-LI1-LI1
47 IR13L382 98 IRBLKS-CO
48 IR09N516 99 IR08L216
49 HHZ 4-SAL5-Y2-Y1 100 IRBLTA2-IR64
50 IR14L262 101 IRBLTA-ME
51 IR14L235 102 IRBLKM-TS

Table 1. The number and name of evaluated genotypes
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where FGWs and FGWp are the yield of the ith genotype 
under stress and normal conditions, respectively. FGWmp 
is the mean yield of all genotypes in control condition.

Genotypic assessments
The DNA extraction was performed in line with a method 
by Saghi Maroof et al. (1994). The agarose gel electro-
phoresis was utilized to determine the concentration 
and quality of extracted DNA. The PCR reaction was 
performed for 21 SSR markers (Table 3). 

Statistical analysis
The analysis of variance and mean comparison were 
performed by SAS 9.2 software. Cluster and correlation 
analysis were conducted between traits via SPSS 23. The 
regression method and SPSS 23 were used to investigate 
the relationships of the traits and SSR alleles. To this 
end, the phenotypic traits were considered as dependent 
variables; and amplified alleles as independent variables. 
The response of the genotypes to drought stress based on 
artificial the intelligence-based methods was predicted 
through Weka 3.8 software by Hall et al. (2009).

Results and Discussion

Analysis of variance (ANOVA) and mean comparison
The differences between genotypes were significant for 
all traits under flooding and deficit irrigation condi-
tions. The significance of the traits indicated the genetic 
diversity among genotypes in terms of studied traits. Dif-
ferent responses of rice genotypes between flooding and 
deficit irrigation were investigated by a other researchers, 
including Lanceras et al. (2004). The mean of all traits, 
except for a NIFT, was higher at the flooding stage than 
the deficit irrigation stage. In flooding, IRRI133 and B40 
genotypes were among the top 10% genotypes in terms of 
PH, PLW, PAW, NUFG. In the deficit irrigation condition, 
B40 and BP 11820-5F-KN-10-2 genotypes were among 
the top 10% genotypes in terms of PH, PLW, NFT, PAW, 
FGW, and SD. In general, flooding and deficit irrigation 
conditions of B40 were better than other genotypes.

Relationships of traits
Under flooding condition, the highest correlations be-
longed to PLW and LW (0.793**), and also PLW and NFT 

Decimal score Heading Panicle exertion Panicle size Spikelet fertility (%) Grain filling Leaf rolling

1 No delay Full Normal 91-100 Mostly well filled Slight folding

3 Delayed by less than 1 week Full Normal 76-90 Mostly well filled Half rolling

5 Delayed by more than 1 week Partial Slightly reduced 51-75 Mostly half filled Full to tight

7 Delayed by less than 2 weeks Half-exerted Reduced by half 11-50 half-filled to empty Tight 

9 No heading until soil moisture is
replenished

Half-exerted Reduced by half 0-10 Mostly empty Tight 

Table 2. Scoring system for drought resistance screening at reproductive 12-15 days after start of stress IRRI, 1981.

Primer Chr. Forward Reverse Reference

RM530 2 GCACTGACCACGACTGTTTG ACCGTAACCCGGATCTATCC Vikram et al. 2011; Donde et al. 2019

RM127 4 GTGGGATAGCTGCGTCGCGTCG AGGCCAGGGTGTTGGCATGCTG Lanceras et al. 2004

RM129 1 TCTCTCCGGAGCCAAGGCGAGG CGAGCCACGACGCGATGTACCC Prasad et al. 2016

RM216 10 GCATGGCCGATGGTAAAG TGTATAAAACCACACGGCCA Dixit et al. 2014; Vikram et al. 2011

RM231 3 CCAGATTATTTCCTGAGGTC CACTTGCATAGTTCTGCATTG Diwan et al. 2013

RM236 2 GCGCTGGTGGAAAATGAG GGCATCCCTCTTTGATTCCTC  Kumar et al. 2014

RM22 3 GGTTTGGGAGCCCATAATCT CTGGGCTTCTTTCACTCGTC Donde et al. 2019; Vikram et al., 2011

RM60 3 AGTCCCATGTTCCACTTCCG ATGGCTACTGCCTGTACTAC Donde et al., 2019; Vikram et al. 2011

RM12091 1 CTGCAAATGCACAGGAATCAGG TCCTCTCGCCTTTCTTTCTCTCC Vikram et al. 2011

RM263 CCCAGGCTAGCTCATGAACC GCTACGTTTGAGCTACCACG Vikram et al. 2011

RM520 3 AGGAGCAAGAAAAGTTCCCC GCCAATGTGTGACGCAATAG Venuprasad et al. 2009

RM511 12 CTTCGATCCGGTGACGAC AACGAAAGCGAAGCTGTCTC Bernier et al. 2007

RM157 3 CCTCCTCCTCACGAATCCCGCC GGGCTTCTTCTCCGCCGGCTTC Prasad et al. 2016

RM1029 1 GATTTCCTGCGAATGAGAGAAGG GACTTCAGGGACAAGCAGTTCC kumar et al., 2017

RM304 10 TCAAACCGGCACATATAAGAC GATAGGGAGCTGAAGGAGATG Swamy et al. 2017; Kumar et al. 2017

Table 3. Characteristics of the studied SSR markers
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(0.710**). The correlations between traits can be due to 
the pleiotropic effect of genes, gene interconnections, or 
epistatic effects. In deficit irrigation conditions, the highest 
correlations belonged to NFT and PAW (0.668**), and also, 
NFG with FGW (0.664**). Researchers found that under 
optimal irrigation conditions, there was a high genetic 
correlation between biological yield (BIO), harvest index 
(HI), panicle fertility percentage (PAF), NFT, PH, and 
grain yield (YID). However, BIO and HI had significant 
correlation with YID under deficit irrigation conditions 
(Lanceras et al. 2004). In a study regarding the drought 
stress conditions, there was a significant correlation 
(0.75**) between root length (ROL) and stem length (STL) 
in rice (Lum et al. 2014). In a study on rice under drought 
stress conditions, the highest positive and significant 
correlation coefficient (0.67**) were reported between 
the ROL and STL (Srividhya et al. 2011). The stepwise 
regression was used to select the traits that were essential 
in explaination growth variation of the genotypes. In 
flooding conditions, the FGW was considered as depen-
dent variable and other traits as independent variables. 
The NFG explained maximum variation of 32.7% (F = 
43.696 and regression coefficient of 0.320). When the 
number of genotypes in deficit irrigation was considered 
as dependent, and other traits as independent variable, 
the NFG, PAW and NUFG respectively was explained as 
the highest percentage (50.01%) of variations (F = 44.653 
and regression coefficients of 0.010 and 0.052). In cereals, 

the varieties which can produce high biomass prior to 
flowering and increase loading in the stem, are among 
drought-tolerant varieties (Winkel 1989). Higher total 
biomass production, resulting in more root biomass, is 
probably a desirable trait for arid environments (Boogard 
et al. 1996). The correlations between traits presented in 
Table 4.

Association analysis
Molecular data were fitted to each of the traits to deter-
mine the association between morphological traits and 
amplified alleles (Table 5 and 6). Most alleles containing 
information in flooded conditions belonged to the NFG. 
7 alleles were associated with this trait, of which 4 alleles 
had a negative effect and 3 alleles had a positive effect on 
the number of full grains. The highest number of posi-
tive alleles belonged to PAW (RM29a, RM75c, RM53e, 
RM45e, and RM56g). 6 alleles were attached to this trait, 
of which 5 alleles had a positive and increasing effect. 
An allele was negatively associated with pH. This allele 
can be used to lower the pH in selector-assisted selection 
programs. For PLW, NFT, PE, FLL, FLW, NPB, NUFG, 
FGW, LW and SD, 1, 4, 4, 4, 6, 1, 5, 3,5, 2 and 2 alleles 
containing information were identified, respectively. 
RM53e was associated with PLW, NPT, PAW, and LW. 
RM45e alleles had the highest association with the traits 
by correlating with PH and PAW; and RM63e alleles by 
correlating with FGW, and NFG. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0.414** 0.205 0.130 0.155 0.312** -0.058 0.118 0.122 0.129 0.074 0.244* 0.126 0.078 0.063

2 0.265* 1 0.560** 0.039 0.632** 0.214* -0.104 0.163 0.082 0.195 0.061 0.095 0.167 0.564** 0.091

3 0.133 0.710** 1 -0.136 0.668** 0.113 0.125 -0.029 0.187 0.056 0.446** -0.233* 0.510** 0.008 -0.155

4 -0.052 -0.004 -0.161 1 0.179 0.171 0.150 0.012 0.166 0.150 0.061 0.181 0.020 0.104 0.097

5 0.148 0.609** 0.507** 0.030 1 0.337** 0.138 0.151 0.246* 0.177 0.271** -0.087 0.416** 0.226* -0.016

6 0.242* 0.085 -0.048 -0.186 0.050 1 0.168 0.548** 0.383** 0.483** 0.094 0.290** 0.201 0.054 0.090

7 0.074 -0.123 0.144 0.039 -0.064 -0.104 1 0.017 0.023 -0.147 0.309** -0.252* 0.323** -0.183 0.092

8 0.337** 0.157 0.094 -0.092 0.155 0.134 -0.124 1 0.421** 0.563** -0.020 0.233* 0-.016 0.369** 0.050

9 0.151 0.251* -0.005 -0.088 0.159 -0.017 -0.277** 0.197 1 0.533** 0.210* 0.233* 0.168 0.049 0.040

10 0.146 0.189 -0.109 -0.155 0.189 0.245* -0.257* 0.305** 0.270** 1 0.119 0.442** 0.094 0.373** 0.047

11 0.169 0.238* 0.081 -0.084 0.329** -0.020 -0.221* 0.106 0.306** 0.307** 1 -0.227* 0.664** -0.086 -0.026

12 0.225* 0.153 0.002 -0.075 0.179 0.087 -0.190 0.182 0.198 0.221* 0.045 1 -0.327** 0.173 0.170

13 0.176 0.106 0.003 -0.142 0.327** -0.001 -0.099 0.194 0.257* 0.298** 0.572** -0.104 1 -0.152 0.046

14 0.163 0.793** 0.452** 0.064 0.374** 0.065 -0.313** 0.324** 0.274** 0.282** 0.198 0.161 0.103 1 0.105

15 0.112 0.312** 0.146 -0.059 0.188 -0.031 -0.182 -0.045 0.309** 0.003 0.073 0.100 0.007 0.234* 1

Table 4. Correlations matrix in flooding and deficit irrigation condition (above diameter: correlation at deficit irrigation and below diameter: 
correlation at flooding condition)

* and * significant in 0.05 and 0.01 level of probability respectively. 
1. Plant height, 2. Plant weight, 3. Number of fertile panicles, 4. Number of infertile panicles, 5. Panicle weight, 6. main panicle length, 7. Panicle extrusion, 
8. Flag leaf length, 9. Flag leaf width, 10. Number of primary branches, 11. Number of filled grains, 12. Number of unfilled grains, 13. Filled grain weight, 
14. Leaf weight, 15.Shoot diameter.
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Traits Intercept Allele B† STD†† F††† R2

PH 77.701 RM45e -2.754** 0.933 8.718** 0.088
PLW 11.073 RM53e 1.553** 0.553 7.885** 0.081

NFT 2.866

RM25d 0.905** 0.287 7.834** 0.080
RM53e 0.916** 0.126 8.379** 0.158
RM25b -0.678* 0.285 7.875** 0.212
RM41e 0.222* 0.106 7.245** 0.250

NIFT 0.152
RM45f 0.196** 0.042 15.232** 0.145
RM37b 0.044** 0.013 13.407** 0.232
RM46d 0.107* 0.042 11.666** 0.285

PAW 2.547

RM29a 2.626** 0.932 21.554** 0.193
RM75c 0.695** 0.181 15.087** 0.253
RM53e 0.552** 0.148 13.070** 0.308
RM45e 0.679** 0.211 12.646** 0.368
RM56g 0.196** 0.058 13.438** 0.439
RM75g -0.497* 0.206 12.789** 0.474

PE 2.454

RM46d 1.038** 0.226 21.272** 0.191
RM29a -2.528** 0.978 13.845** 0.237
RM65i 1.852* 0.803 11.501** 0.282
RM65f -1.725* 0.804 10.129** 0.318

FLL 25.115

RM43b 2.099** 0.450 13.419** 0.130
RM29d 4.832** 1.295 10.822** 0.196
RM40b -2.599** 0.820 9.114** 0.237
RM40d 1.963* 0.808 8.377** 0.278
RM43c -1.330* 0.595 7.933** 0.316
RM63f -0.564* 0.270 7.599** 0.349

FLW 7.510 RM29e -0.780** 0.0268 8.432** 0.086

NPB 10.444

RM25c -0.519** 0.139 15.915** 0.150
RM43d 0.692** 0.181 12.528** 0.220
RM25f 0.275** 0.137 10.219** 0.258
RM46d -1.324** 0.355 9.223** 0.298
RM 46e 1.076** 0.364 9.786** 0.363

NFG 68.344

RM45g 7.686** 1.998 7.363** 0.076
RM63e -3.366** 1.044 7.132** 0.138
RM33j -4.565** 1.585 7.380** 0.20
RM45f -7.173** 2.673 7.406** 0.254
RM41a 4.569** 1.587 7.464** 0.30
RM40d 2.923* 1.144 7.571** 0.348
RM29f -11.457* 5.752 7.283** 0.378

NUFG 15.645
RM45g 4.435** 1.287 4.840** 0.051
RM45h -4.479* 1.802 5.547** 0.111
RM41e 1.583* 0.784 5.184** 0.150

FGW 1.077

RM75c 0.079** 0.024 6.900** 0.071
RM56f 0.044** 0.014 6.701** 0.131
RM65g -0.028* 0.011 6.327** 0.177
RM63e -0.062** 0.022 6.674** 0.235
RM33g -0.062* 0.028 6.606** 0.278

LW 1.225
RM53e 0.146* 0.058 5.805* 0.061
RM25a -0.060* 0.030 5.029* 0.102

SD 4.015
RM37h 0.029** 0.007 15.693** 0.148
RM29a 0.382** 0.097 16.926** 0.276

PH: Plant height, Plant weight:PLW, Number of fertile tiller: NFT, Number of infertile tiller: NIFT, Panicle weight: PAW, Panicle length: PL, Panicle exertion: 
PE, Flag leaf length: FLL, Flag leaf width: FLW, Number of primary branches: NPB, Number of filled grains: NFG, Number of unfilled grains: NUFG, Filled 
grain weight: FGW, Leaf weight; LW, Shoot diameter: SD
† Regression coefiecient, †† Standard errore  of regression coefiecient, and ††† F test for regression analysis
* and * significant in 0.05 and 0.01 level of probability respectively.

Table 5. Forward regression between traits as dependent variables and amplified alleles as independent variable (association analysis) at 
flooding conditions
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Under deficit irrigation conditions, RM63g, RM63b, 
RM63c, RM37h had a positive and significant associa-
tion with number of NFT. Also, RM29e, RM41c, RM25c, 
RM25f and RM43d linked to NPB. RM29e allele was 
associated with PL, FFF, FLW, NPB; RM63g allele was 
associated with PLW, and PAW. RM37h allele was associ-
ated with the SD under both flooding and deficit irriga-
tion. The results of the analysis indicated that SSR loci of 
RM29, RM63, and RM53 had the highest explaination for 

variations in traits and could be useful in the subsequent 
studies of breeding programs. 

The association analyses of 128 rice genotypes and 11 
agronomic traits were investigated over two years. The 
population was analyzed by 125 microsatellite markers 
covering the entire genome. In total, 16 markers showed 
significant associations with different traits. Also, the 
researchers suggested the efficiency of association analysis 
was useful in investigating different rice genotypes in 

Traits Intercept Allele B† STD†† F††† R2

PLW 4.962 RM63g 2.301** 0.263 13.529** 0.131

RM63c -2.171** 0.293 38.222** 0.462

NFT 0.966 RM3g 0.663** 0.079 7.176** 0.074

RM63b -0.313** 0.131 28.657** 0.392

RM63c -0.380** 0.129 22.314** 0.432

RM37h 0.057* 0.026 18.633** 0.461

NIFT 1.901 RM43g 0.449** 0.096 9.350** 0.094

RM45a 0.360** 0.097 10.486** 0.191

RM25e 0.224** 0.059 11.637** 0.284

RM29b 1.048* 0.416 10.829** 0.332

RM43f 0.355*- 0.161 10.023** 0.368

PAW 0.954 RM63g 0.563** 0.086 6.501* 0.067

RM63c -0.539** 0.096 20.791** 0.318

RM41d 0.448* 0.186 16.538** 0.361

PL 15.672 RM29e 1.855*- 0.910 4.153* 0.044

PE 1.424 RM43a 0.679** 0.182 4.551* 0.048

RM43e -0.800** 0.258 7.309** 0.141

FLL 19.965 RM40b -1.087** 0.346 7.881** 0.081

RM43b 1.217** 0.464 7.567** 0.145

RM29e -3.137* 1.396 6.958** 0.192

FLW 6.110 RM29e -0.846** 0.270 7.486** 0.077

RM68h 0.827** 0.270 5.943** 0.118

RM68g -0.709** 0.270 6.533 0.182

NPB 8.102 RM29e -2.079** 0.453 10.684** 0.106

RM41c 0.510** 0.150 10.472** 0.190

RM25c -0.597** 0.158 9.104** 0.237

RM25f 0.466** 0.157 9.224** 0.298

RM43d 0.431** 0.207 8.527 0.331

NUFG 52.268 RM45a 10.441** 2.749 6.216** 0.065

RM75a 4.047** 1.480 6.377** 0.125

RM45h -9.425** 3.860 6.473** 0.181

RM41b 18.658** 8.740 6.190 0.222

LW 0.739 RM41c 0.087* 0.041 4.415* 0.047

SD 3.969 RM37h -0.010* 0.005 4.718* 0.050

Table 6. Forward regression between traits as dependent variables and amplified alleles as independent variable (association analysis) at deficit 
irrigation

PH: Plant height, Plant weight:PLW, Number of fertile tiller: NFT, Number of infertile tiller: NIFT, Panicle weight: PAW, Panicle length: PL, Panicle exertion: 
PE, Flag leaf length: FLL, Flag leaf width: FLW, Number of primary branches: NPB, Number of filled grains: NFG, Number of unfilled grains: NUFG, Filled 
grain weight: FGW, Leaf weight; LW, Shoot diameter: SD
† Regression coefiecient, †† Standard errore  of Regression coefiecient, and ††† F test for regression analysis
* and * significant in 0.05 and 0.01 level of probability respectively
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breeding programs (Zhou et al. 2012). Rabiei et al. (2013) 
studied the genetic diversity and used 8 rice species from 
46 SSR markers and 245 RFLP markers. 20 out of 46 SSR 
markers, showed polymorphism. Number of alleles per 
locus ranged from 2 alleles (RM215, RM133, RM433) to 
6 alleles (RM271).

Predicting the response of genotypes using molecular 
data

The 10-fold cross validation was used to validate the 
classification algorithms. Dataset was divided to k equal 
parts. Each time one part was used for validation and 
other parts were utilized as a training set. To determine 
the types of genotype responses to deficit irrigation, 
first, the phenotypic traits were grouped via TOL and 
STI classification systems. To this end, five percent of 
lower-value genotypes were conventionally classified as 
susceptible, and five percent of higher-value genotypes 
as tolerant, and other genotypes as a semi-susceptible 
group. The classification algorithms were trained by the 
software by a zero-one matrix from the genetic data and 
grouping results based on the TOL and STI system. The 
training algorithm (based on genetic data and without 
using the phenotypic data) will predict genotype reac-
tion (susceptible, semi-susceptible and resistant) based 
on molecular data.

Prediction accuracy, Cohen's kappa and RMSE (Fig. 1, 
2 and 3) were used to evaluate and select the best algo-

rithm (Smeeton 1985). The Cohen's kappa coefficient is a 
statistical criterion of agreement within the evaluator 
between two measurements to classify similar cases. 
Therefore, the higher the kappa coefficient of an algo-
rithm, the higher the accuracy of the algorithm. RMSE 
is a criterion to measure the difference between values 
(sample and population value) predicted by a model or an 
estimator and the observed values. Thus the lower error, 
the higher the accuracy.

At the reproductive stage and based on the prediction 

Classification system TOL STI
Classification algorithm RT RF SMO IBK G48 NB MLP RT RF SMO IBK G48 NB MLP

Traits

PH 19.96 97.82 97.28 95.10 95.65 97.82 97.82 96.73 97.82 97.82 95.96 96.19 97.82 97.82

PLW 82.60 90.21 87.5 80.43 79.89 85.86 86.41 80.97 85.86 85.86 75.54 74.45 80.43 84.23
NFT 95.65 97.28 97.82 94.56 94.02 97.28 97.28 83.15 86.5 83.69 70.65 71.19 77.71 82.06

NIFT 91.84 95.10 92.93 90.21 91.84 93.47 91.84 76.63 79.34 74.45 67.39 68.47 68.47 75.54

PAW 83.69 89.13 85.86 78.26 75 85.32 86.41 70.65 79.89 71.73 59.23 71.19 66.84 75

PL 84.23 91.30 85.32 81.52 79.89 85.32 86.41 96.19 98.36 98.36 96.73 96.73 98.36 98.36

PE 73.91 80.97 75.54 55.43 73.91 75 72.82 80.43 80.97 81.52 66.84 73.91 73.91 80.97

FLL 83.15 89.67 83.69 78.80 77.71 83.15 84.78 96.73 98.36 98.36 96.73 97.82 98.36 98.36

FLW 83.15 88.04 84.23 73.91 82.06 79.89 85.86 97.28 98.36 98.36 97.73 97.82 98.36 98.36

NPB 82.60 88.58 84.23 79.89 81.52 80.43 82.06 97.28 98.36 98.36 96.73 97.82 98.36 98.36

NFG 93.47 97.28 97.28 94.56 94.56 97.28 97.28 83.15 85.32 83.15 67.93 74.45 79.89 80.97

NUFG 91.84 94.02 91.30 88.04 88.04 89.67 90.76 82.60 89.13 85.86 78.26 78.26 85.86 83.69

FGW 77.71 86.95 80.43 77.28 73.91 78.80 82.06 74.45 77.17 73.91 61.95 71.19 71.73 75.54

LW 76.08 72.28 70.10 54.34 70.65 66.84 70.65 77.71 85.86 78.80 73.91 75 77.17 79.89

SD 81.52 89.67 83.69 78.26 76.08 84.23 84.23 92.39 93.47 91.84 86.95 87.5 92.39 92.93

Table 7. Classification accuracy for classification based on TOL and STI system

RT: Random Tree; RF: Random Forest; SMO: Sequential Minimal Optimization; KNS: K-Nearest Neighbors; J48; NB: Nave Bayes; MP: Multiplayer Perceptron.
PH: Plant height, Plant weight:PLW, Number of fertile tiller: NFT, Number of infertile tiller: NIFT, Panicle weight: PAW, Panicle length: PL, Panicle exertion: 
PE, Flag leaf length: FLL, Flag leaf width: FLW, Number of primary branches: NPB, Number of filled grains: NFG, Number of unfilled grains: NUFG, Filled 
grain weight: FGW, Leaf weight; LW, Shoot diameter: SD

Figure 1. Accuracy of categorization for scoring system. RT: Random 
Tree; RF: Random Forest; SMO: Sequential Minimal Optimization; KNS: 
K-Nearest Neighbors; J48; NB: Nave Bayes; MP: Multiplayer Perceptron
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accuracy, the Kappa and RMSE in traits, namely total 
plant weight, number of fertile panicles, number of in-
fertile panicles, length of main panicles, number of filled 

grains, and number of unfilled grains, could be better 
predicted by the RFA in the TOL classification system. 
In other traits, the RFA in the STI classification system 

Classification system TOL STI
Classification algorithm RT RF SMO IBK G48 NB MLP RT RF SMO IBK G48 NB MLP

Traits

PH 0.147 0.125 0.287 0.171 0.167 0.120 0.120 0.154 0.128 0.283 0.166 0.157 0.121 0.121

PLW 0.324 0.25 0.321 0.319 0.327 0.295 0.279 0.352 0.273 0.326 0.356 0.374 0.341 0.294
NFT 0.149 0.139 0.283 0.175 0.195 0.134 0.128 0.317 0.278 0.333 0.362 0.386 0.357 0.339

NIFT 0.221 0.191 0.301 0.254 0.220 0.201 0.222 0.368 0.319 0.363 0.394 0.391 0.421 0.389

PAW 0.316 0.258 0.326 0.336 0.372 0.287 0.268 0.408 0.315 0.371 0.400 0.397 0.430 0.389

PL 0.316 0.245 0.328 0.322 0.344 0.297 0.288 0.147 0.110 0.280 0.150 0.146 0.104 0.101

PE 0.395 0.318 0.36 0.422 0.369 0.382 0.393 0.347 0.302 0.341 0.378 0.372 0.377 0.317

FLL 0.321 0.260 0.333 0.330 0.343 0.312 0.290 0.135 0.109 0.280 0.141 0.119 0.104 0.100

FLW 0.325 0.271 0.333 0.358 0.310 0.342 0.293 0.122 0.110 0.280 0.148 0.119 0.104 0.104

NPB 0.332 0.255 0.332 0.323 0.320 0.337 0.310 0.116 0.110 0.280 0.152 0.119 0.104 0.103

NFG 0.177 0.147 0.285 0.195 0.186 0.134 0.137 0.322 0.281 0.335 0.364 0.367 0.343 0.331

NUFG 0.216 0.206 0.309 0.268 0.273 0.252 0.235 0.317 0.265 0.332 0.339 0.351 0.286 0.316

FGW 0.363 0.278 0.344 0.359 0.377 0.353 0.326 0.399 0.318 0.365 0.401 0.388 0.404 0.388

LW 0.378 0.328 0.376 0.431 0.407 0.434 0.413 0.373 0.286 0.349 0.352 0.355 0.360 0.337

SD 0.324 0.262 0.333 0.336 0.360 0.294 0.304 0.226 0.195 0.314 0.254 0.270 0.219 0.198

Table 9. Mean square root values of the error for classification based on TOL and STI system

RT: Random Tree; RF: Random Forest; SMO: Sequential Minimal Optimization; KNS: K-Nearest Neighbors; J48; NB: Nave Bayes; MP: Multiplayer Perceptron.
PH: Plant height, Plant weight:PLW, Number of fertile tiller: NFT, Number of infertile tiller: NIFT, Panicle weight: PAW, Panicle length: PL, Panicle exertion: 
PE, Flag leaf length: FLL, Flag leaf width: FLW, Number of primary branches: NPB, Number of filled grains: NFG, Number of unfilled grains: NUFG, Filled 
grain weight: FGW, Leaf weight; LW, Shoot diameter: SD

Classification system TOL STI
Classification algorithm RT RF SMO IBK G48 NB MLP RT RF SMO IBK G48 NB MLP

Traits

PH 0.483 0.658 0.604 -0.008 0.000 0.658 0.658 0.557 0.658 0.658 0 0.350 0.658 0.658

PLW 0.442 0.619 0.593 0.000 0.298 0.490 0.548 0.515 0.583 0.642 0.312 0.281 0.511 0.593
NFT 0.536 0.656 0.741 0.000 -0.009 0.656 0.656 0.538 0.589 0.543 0.199 0.012 0.423 0.156

NIFT 0.518 0.645 0.546 0.000 0.320 0.569 0.505 0.513 0.550 0.468 0.230 0.342 0.327 0.490

PAW 0.522 0.613 0.581 0.054 0.054 0.561 0.567 0.410 0.574 0.432 0.165 0.402 0.329 0.495

PL 0.438 0.625 0.500 -0.020 -0.047 0.474 0.513 0.518 0.660 0.660 0.000 0.386 0.660 0.660

PE 0.436 0.559 0.484 0.118 0.403 0.465 0.425 0.595 0.586 0.622 0.233 0.470 0.449 0.601

FLL 0.485 0.616 0.526 0.101 0.242 0.453 0.549 0.487 0.660 0.660 0.000 0.493 0.660 0.660

FLW 0.511 0.609 0.565 0.196 0.475 0.440 0.600 0.535 0.660 0.660 0.000 0.493 0.660 0.660

NPB 0.508 0.589 0.532 0.137 0.418 0.409 0.468 0.534 0.660 0.660 0.000 0.493 0.660 0.660

NFG 0.425 0.656 0.656 0.000 0.000 0.656 0.656 0.583 0.580 0.581 0.219 0.255 0.522 0.514

NUFG 0.595 0.642 0.567 0.000 0.262 0.464 0.520 0.480 0.606 0.562 0.165 0.188 0.533 0.515

FGW 0.444 0.578 0.472 0.019 0.067 0.399 0.492 0.494 0.539 0.480 0.258 0.423 0.439 0.511

LW 0.529 0.454 0.411 0.097 0.419 0.347 0.422 0.503 0.638 0.521 0.293 0.408 0.482 0.526

SD 0.441 0.616 0.507 0.009 0.075 0.477 0.509 0.657 0.643 0.617 0.000 0.467 0.619 0.647

RT: Random Tree; RF: Random Forest; SMO: Sequential Minimal Optimization; KNS: K-Nearest Neighbors; J48; NB: Nave Bayes; MP: Multiplayer Perceptron.
PH: Plant height, Plant weight:PLW, Number of fertile tiller: NFT, Number of infertile tiller: NIFT, Panicle weight: PAW, Panicle length: PL, Panicle exertion: 
PE, Flag leaf length: FLL, Flag leaf width: FLW, Number of primary branches: NPB, Number of filled grains: NFG, Number of unfilled grains: NUFG, Filled 
grain weight: FGW, Leaf weight; LW, Shoot diameter: SD

Table 8. Kappa statistics values for classification based on TOL and STI system
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made a better prediction. The highest accuracy was 98.36 
for main panicle length, flag leaf length, flag leaf width, 
and number of primary branches. After the RFA, the 
MLP algorithm had better prediction power than other 
algorithms in both systems. The SMO algorithm was 
put in the next rank in terms of the prediction accuracy. 

When a genotype code was considered as a criterion 
for the classification of genotypes under drought stress 
at the reproductive stage, the RFA with a prediction ac-
curacy of 67.93, kappa value of 0.514, and RMSE of 0.293 
was the best algorithm followed by the MLP algorithm 
as the second rank (Table 7, 8 and 9). All the algorithms 
made the prediction in one second; however, the MLP 
algorithm took about 50 times more time to make the 
prediction. 

Conclusion

According to the results, if we predict the response of 
genotypes based on zero-one data of the markers, we 
can classify them based on the introduced algorithms 
in susceptible, tolerant and semi-susceptible groups. 
According to the results of the artificial intelligence, the 
maximum accuracy of 98.36 for the RFA was obtained in 
traits, namely main panicle length, flag leaf length, flag 
leaf width, and number of primary branches. After the 
RFA, the MLP algorithm had better predictive power in 
both systems than other algorithms.

Acknowledgments

The authors acknowledge the Research Deputy of Gonbad 
Kavous University for providing funding to complete 
this work

References

Bernier J, Altin GN, Serraj R, Kumar A, Spaner D (2007) 
Breeding upland rice for drought resistance. J Sci Food 
Agric 88(6):927-939.

Bramer M (2007) Principle of Data Mining. Springer-Verlag 
London. pp 341.

Boogard R, Veneklaas E, Lambers H (1996) The association of 
biomass allocation with growth and water use efficiency of 
two T. aestivum cultivars. Aust J Plant Physiol 23(6):751-761.

Chuang HY, Lur SH, Hwu KK, Chang MC (2011) Authen-
tication of domestic Taiwan rice varieties based on fin-
gerprinting analysis of microsatellite DNA markers. Bot 
Stud 52: 393-405.

Das B, Sengupta S, Ghosh M, Ghose TK (2012) Assessment 
of diversity among a set of aromatic rice genotypes from 
India. Int J Biodivers Conserv 4(5):206-218.

Diwan JM, Channbyregowda V, Salimath PS, Bhat R (2013) 
Molecular mapping of early vigour related QTLs in rice. 
Res J Bio 1:24-30.

Dixit S, Singh A, Kumar A (2014) Rice breeding for high grain 
yield under drought: a strategic solution to a complex 
problem. Int J Agron 1-16.

Donde R, K umar J, Gouda G, K umar MG, M ukherjee M, 
Ba ksh SY, M ahadani P, S ahoo K, Be hera L, K umar SD 
(2019) Assessment of genetic diversity of drought toler-
ant and susceptible rice genotypes using microsatellite 
markers. Rice Sci 26(4):239-247.

Fernandez GCJ (1992) Effective selection criteria for assessing 
plant stress tolerance. In Kuo CC, Ed., Proceedings of an 
International Symposium on Adaptation of Food Crops 
to Temperature and Water Stress. AVRDC Publication, 

Figure 2. Mean kappa statistics for scoring system. RT: Random Tree; 
RF: Random Forest; SMO: Sequential Minimal Optimization; KNS: K-
Nearest Neighbors; J48; NB: Nave Bayes; MP: Multiplayer Perceptron

Figure 3. Mean square root error statistics for scoring system. RT: 
Random Tree; RF: Random Forest; SMO: Sequential Minimal Optimiza-
tion; KNS: K-Nearest Neighbors; J48; NB: Nave Bayes; MP: Multiplayer 
Perceptron

Rice performance prediction

45



Tainan, 257-270.
Frate FD, Ferrazoli P, Schiavon G (2003) Retrieving soil mois-

ture and agricultural variables by microwaver adiometry 
using neural network. Remote Sens Environ 84:174-183.

Giasi Oskoei M., Farahbakhsh H, Sabouri H, Mohamadinejad 
G (2014) Evaluation of rice cultivars in drought and nor-
mal conditions based on sensitive and tolerance indices. 
J Crop Prod 6(4):55-75.

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, 
Witten IH (2009) The WEKA data mining software. an 
update. ACM SIGKDD Explor Newslett 11(1):10-18.

Kantardzic M (2003) Data Mining: Concepts, Models, Meth-
ods, and Algorithms. Wiley-Interscience.

Kumar A, Basu S, Ramegowda V, Pereira A (2017) Mechanisms 
of drought tolerance in rice. In Sasaki T, Ed., Achieving 
Sustainable Cultivation of Rice. Vol 1. Burleigh Dodds 
Science Publishing Ltd.

Kumar A, Dixit S, Ram T, Yadaw RB, Mishra KK, Mandal 
NP (2014) Breeding highyielding drought-tolerant rice: 
genetic variations and conventional and molecular ap-
proaches. J Exp Bot 65(21):6265-6278.

Lanceras JC, Pantuwan G, Jongdee B, Toojinda T (2004) 
Quantitative trait loci associated with drought tolerance 
at reproductive stage in rice. Plant Physiol 135(1):384-399.

Loresto GC, Chang TT (1981) Decimal scoring system for 
drought reactions and recovery ability in screening nurs-
eries of rice. Int Rice Res Newsl 6(2):9-10.

Lum MS, Hanafi MM, Rafii YM, Akmar ASN (2014) Effect 
of drought stress on growth proline and antioxidant 
enzyme activities of upland rice. J Animal and Plant Sci 
24(5):1487-1493.

Pachepsky YA, Timlin D, Varallyay G (1996) Artificial neural 
networks to estimate soil water retention from easily 
measurable data. Soil Sci 60:727-733.

Pierre CS, Crossa J, Manes Y, Reynolds MP (2010) Gene ac-
tion of canopy temperature in bread wheat under diverse 
environments. Theor Appl Genet 120(6):1107-1117.

Rabiei B, Zarbafi S, Allah Gulipur M (2013) Genetic analysis 
of traits related to appearanceand baking in different rice 
cultivars. Iran J Crop Sci 44:597-612.

Rosielle AA, Hambline J (1981) Theoretical aspects of selec-
tion for yield in stress and non-stress environments. Crop 
Sci 21:943-946

Sabouri A, Dadras AR, Azari M, Saberi Kouchesfahani A, 
Taslimi M, Jalalifar R (2022) Screening of rice drought-
tolerant lines by introducing a new composite selection 
index and competitive with multivariate methods. Sci 
Rep 12:2163.

Saghi Maroof MA, Biyaoshev RM, Yang GP, Zhang Q, Allard 
RW (1994) Extraordinarily polymorphic microsatel-
lites DNA in barly species diversity, chromosomal loca-
tion, and population dynamics. Proc Natl Acad Sci USA 
91(12):4566-5570.

Sarayloo M, Sabouri H, Dadras A (2015) Assessing genetic 
diversity of rice genotypes using microsatellite markers 
and their relationship with morphological characteristics 
of seedling stage under non- and drought-stress condi-
tions. Cereal Res 5(1):1-15.

Sarma RN, Rathi S (2012) Microsatellite diversity in indig-
enous glutinous rice landraces of Assam. Indian J Biotech 
11:23-29.

Shamsabadi EE, Sabour H, Soughi H, Sajadi SJ, Dadras AR 
(2021) Using of GGE biplot in determination of genetic 
structure and heterotic groups in wheat (Triticum aestivum 
L.). Acta Biol Szeged 65(1):17-27.

Shirmohammadli S, Sabouri H, Ahangar L, Ebadi A, Sajjadi 
S (2018) Genetic diversity and association analysis of rice 
genotypes for grain physical quality using iPBS, IRAP, 
and ISSR markers. J Genet Res 4(2):122-129.

Smeeton NC (1985) Early History of the Kappa Statistic. 
Biometrics 41(3), International Biometric Society, 795.

Srividhya A, Vemireddy LR, Ramanarao PV, Sridhar S, Jay-
aprada M, Anuradha G, Srilakshmi B, Reddy HK, Harip-
rasad AS, Siddiq EA (2011) Molecular mapping of QTLs for 
drought related traits at seedling stage under PEG induced 
stress conditions inrice. Amer J Plant Sci 2:190-201.

Swamy BPM, Shamsudin NAA, Rahman SNA, Mauleon R, 
Ratnam W, Teressa MS, Kumar C, Kumar A (2017) As-
sociation mapping of yield and yield related traits nnder 
reproductive stage drought stress in rice (Oryza sativa 
L.). Rice 10:21.

Todaka D, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki 
K (2012) Toward understanding transcriptional regula-
tory networks in abiotic stress responses and tolerance 
in rice. Rice 5(1):6.

Venuprasad R, Dalid CO, Del Valle M, Zhao D, Espiritu M, 
Sta Cruz MT, Amante M, Kumar A, Atlin GN (2009) 
Identification and characterization of large-effect quan-
titative trait loci for grain yield under lowland drought 
stress in rice using bulk-segregant analysis. Theor Appl 
Genet 120:177-190.

Vikram P, Swamy MBP, Dixit SH, Ahmed HU, Cruz MTS, 
Singh AK, Kumar A (2011) qDTY1.1, a major QTL for rice 
grain yield under reproductive-stage drought stress with 
a consistent effect in multiple elite genetic backgrounds. 
BMC Genetics 12:89.

Wang H, Xu X, Zhan X, Zhai R, Wu W, Shen X, Dai G, 
Cao L, Cheng SH (2013) Identification of qRL7, a major 
quantitative trait locus associated with rice root length in 
hydroponic conditions. Breed Sci 63(3):267-274.

Winkel A (1989) Breeding for drought tolerance in cereals. 
Vertr Pflanzenzucht 16:357-368.

Zhou J, You A, Ma Z, Zhu L, He G (2012) Association analysis 
of important agronomic traits in japonica rice germplasm. 
African J Biotech 11(12):2957-2970.

Ghasemi et al.

46


