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ABSTRACT 

Localization aims to provide the best estimate of the robot pose. It is a crucial algorithm in every robotics application, 

since its output directly determines the inputs of the robot to be controlled in its configuration space. In real world of 

engineering, the robot dynamics related measurements are subject to both uncertainties and disturbances. These error 

sources yield unreliable inferences of the robot state, which inherently result in wrong consensus about the appropriate 

control strategy to be applied. This outcome may drive the system out of stability and damage both the physical system 

and its environment. The localization algorithm captures the uncertainties with probabilistic approaches. Namely, the 

measurement processes are modelled along with their unreliability, moreover, the synergy of multiple information 

sources is formulated with the aim to calculate the most probable estimate of the robot pose. In essence, this algorithm 

is composed of two main parts, i.e., first the dynamics of the system is derived, and the corresponding uncertainties are 

initially predicted, next the additional sensor information is incorporated in the algorithm to refine the posterior 

estimate. This approach provides the state-of-the-art solution for the derivation of mobile robot poses in real 

applications. 

Keywords: localization, pose estimation, sensor fusion, mobile robot, Kalman filter 

1. INTRODUCTION 

Mobile robots have a wide application spectrum from industrial applications, over domestic solutions in 

everyday life, to education platforms at universities [1]. Their popularity is based on the simple mechanical 

structure, small footprint, easily realizable and agile maneuvers. One of the main purposes of the software 

architecture, which operates the mobile robot, is the calculation of the suitable control inputs that 

contribute to successful robot motions. Successful control means that the robot is able to realize the motion 

between two desired points in its configuration space.  

The control structure of mobile robots can be seen in Fig. 1. This control problem is solved in multiple 

steps. First, the sensors supply measurements of the instantaneous system dynamics. Next, the task of the 

localization is to obtain the most probable robot pose (position and orientation); i.e., this is a state 

estimation task. Then, the path planner designs the desired trajectory (series of feasible maneuvers) 

between the desired points based on both the obtained robot pose and information about its environment 

(i.e., occupancy grid that characterizes both the free space and obstacles around the robot). Finally, the 

control algorithm is responsible to track the trajectories, thus it calculates suitable inputs that are supplied 

to the actuators of the physical system. 

In this work, the performance of the extended Kalman filter (EKF) for mobile robot pose estimation is 

evaluated for two test scenarios based on an experimental setup. 
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Figure 1: The control structure of mobile robots  

2. MATERIALS AND METHODS 

The localization problem is solved via fusing multiple independent sensors [2]. It is a recursive algorithm, 

which first incorporates the uncertainties of each sensor, then formulates the synergy of the applied sensors 

in a probabilistic framework: 

 

𝑝(𝑥𝑡|𝑚𝑎𝑝, 𝑧𝑡 , 𝑢𝑡) = 𝜂 ∙ 𝑝(𝑧𝑡|𝑥𝑡 , 𝑚𝑎𝑝)∫ 𝑝(𝑥𝑡|𝑢𝑡 , 𝑥𝑡−1)𝑝(𝑥𝑡−1|𝑚𝑎𝑝, 𝑧𝑡−1, 𝑢𝑡−1) 𝑑𝑥𝑡−1
𝐶

 (1) 

 

where 𝜂 is the normalization factor, 𝐶 denotes the configuration space of the robot, 𝑝(𝑧𝑡|𝑥𝑡 , 𝑚𝑎𝑝) 
characterizes the observation, 𝑝(𝑥𝑡|𝑢𝑡 , 𝑥𝑡−1) describes the motion dynamics, and 𝑝(𝑥𝑡−1|𝑚𝑎𝑝, 𝑧𝑡−1, 𝑢𝑡−1) 
denotes the probability density function of the system state in the previous epoch.  

The problem is addressed in detail in the case of wheeled mobile robots as follows. The relative motion of 

the system is measured by wheel encoders [3] and/or inertial measurement units (IMU) [3-6]. Wheel 

encoders measure how many times has the motor rotated, which can be used to calculate distance based on 

the wheel diameter. IMUs consist of a three-axis accelerometer and a three-axis gyroscope. Accelerometers 

measure linear acceleration, while gyroscopes provide angular velocity measurements. The orientation can 

be computed by the integration of the gyroscope signals. By integrating once, the acceleration, the velocity 

can be given, and the position can be calculated by one further integration. 

By the probabilistic characterization of the aforementioned sensors, the motion model of the system is 

obtained. The motion model describes the system evolution based on the input signals over time. However, 

the incorporated sensors are imperfect, namely, the inherent noise (e.g., random measurement noise and 

temperature dependent bias) yields to imprecise motion-model based pose results. On one hand, drift is 

generated during data processing, on the other hand, the uncertain parameters of the physical system, 

moreover, the uncertainties induced by the environment of the robot (e.g., uneven, and slippery terrain [3, 

7]) significantly reduce the estimation performance and thus the reliability of the so-called a priori 

estimate. 
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The a priori belief bel̅̅ ̅̅ (𝑥𝑡) of the robot pose 𝑥𝑡 is obtained as follows. 

 

bel̅̅ ̅̅ (𝑥𝑡) = ∫ 𝑝(𝑥𝑡|𝑢𝑡 , 𝑥𝑡−1)bel(𝑥𝑡−1)𝑑𝑥𝑡−1
𝐶

 (2) 

 

The localization algorithm handles the aforementioned problems and compensates for the generated errors 

in its update phase. The update phase incorporates additional sensors, which provide information of the 

robot pose in its inertial coordinate system. Namely, the absolute pose data is obtained based on vision 

sensors, signal strength measurements or global positioning system (GPS). Vision sensors are used in both 

indoor and outdoor environments, and they include cameras and LiDAR sensors [5-6, 8]. The GPS is a 

widely used technology for determining absolute position in outdoor environment, but it does not provide 

reliable measurements in indoor environment [9]. Signal strength measurements are widely used for 

absolute position estimation in indoor environments [9]. These methods utilize the received signal strength 

indicator (RSSI), which can be read from the wireless transceiver modules and can be used to estimate 

distances. The RSSI measurements collected during the communication between the mobile object and so-

called anchor nodes, which have known position, can be used to estimate the position of the mobile object. 

The a posteriori belief bel(𝑥𝑡) of the robot pose 𝑥𝑡 is given as follows. 

 

bel(𝑥𝑡) = 𝜂 ∙ 𝑝(𝑧𝑡|𝑥𝑡)bel̅̅ ̅̅ (𝑥𝑡) (3) 

 

It should be noted that these measurements are also characterized by anomalies (e.g., noise, low resolution, 

and low sampling rate). The characterization of these anomalies yields the observation model. In a 

recursive fashion, the localization algorithm predicts the state of the system with the a priori estimate (via 

the motion model), while the observation model evaluates this prediction and obtains the refined a 

posteriori robot pose in a Bayesian estimation framework. This framework is the basis for many popular 

state-of-the-art algorithms such as the Kalman filter, particle filter, information filter and histogram filter. 

In the case of nonlinear systems, the EKF needs to be used, which linearizes about an estimate of the 

current mean and covariance. 

3. RESULTS AND DISCUSSION 

3.1. Kalman filter for localization 

The Kalman filter is a recursive Bayes filter, which provides the optimal state estimate with minimized 

error variance [2]. It incorporates linear models for motion 𝑝(𝑥𝑡|𝑢𝑡 , 𝑥𝑡−1) and observation 𝑝(𝑧𝑡|𝑥𝑡 , 𝑚𝑎𝑝), 
moreover, it significantly reduces the complexity of estimation by the utilization of normal distributions. 

The extension of the algorithm enables the usage of nonlinear models, however suboptimal performance is 

obtained in these cases. Prediction and update phases are given as follows. 

Prediction: 

 

𝑥− = 𝑓(𝑥𝑡 , 𝑢𝑡) (4) 

𝑃− = 𝐽𝐹𝑃𝑡𝐽𝐹
𝑇 + 𝑄 (5) 

 

Correction: 

 

𝐾 = 𝑃−𝐽𝐻
𝑇(𝐽𝐻𝑃−𝐽𝐻

𝑇 + 𝑅)−1 (6) 

𝑥𝑡+1 = 𝑥− + 𝐾(𝑧 − ℎ(𝑥−)) (7) 

𝑃𝑡+1 = (𝐼 − 𝐾𝐽𝐻)𝑃− (8) 
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The algorithm obtains the predicted state along with its covariance (𝑥− and 𝑃−) based on the system 

dynamics 𝑓(𝑥𝑡 , 𝑢𝑡), Jacobian of the system dynamics (𝐽𝐹), and covariance matrix of this motion model 𝑄. 

Then, the Kalman gain is calculated with the help of both the Jacobian 𝐽𝐻 of the observation model ℎ(𝑥−) 
and covariance matrix of measurement 𝑅. This gain determines the importance of instantaneous 

measurement 𝑧 and updates the predicted state estimation accordingly. 

3.2. Experimental setup 

The pose of the mobile robot which performs planar motion is characterized by the position 𝑥, 𝑦 and 

orientation 𝜙. The wheel encoders are used by low level controllers to maintain the instantaneous linear 

and angular speed values. Thus, the input of the motion model is formulated as: 

 

𝑢𝑡 = (𝑣𝑡 , 𝜔𝑡)
𝑇. (9) 

 

Since the encoders are sensitive to uneven and slippery terrains, therefore it is expected that the input 

signal-based prediction ensures only short-term accuracy. Complementary measurements are provided by 

the GPS receiver, which provides observations for the position of the robot: 

 

𝑧𝑡 = (𝑥𝑡 , 𝑦𝑡)
𝑇. (10) 

 

The motion model is characterized with the state vector 𝑥, as given in (11). 

 

𝑥 = (𝑥, 𝑦, 𝜙, 𝑣)𝑇 (11) 

 

The motion equations are described in discrete time nonlinear state space. The coordinates of the robot are 

obtained in the t+1 epoch based on simple discrete time integration as follows.  

 

𝑥𝑡+1 = 𝑥𝑡 + 𝑣𝑡 cos𝜙 (12) 

𝑦𝑡+1 = 𝑦𝑡 + 𝑣𝑡 sin𝜙 (13) 

𝜙𝑡+1 = 𝜙𝑡 + 𝜔𝑡 𝑑𝑡 (14) 

𝑣𝑡+1 = 𝑣𝑡  (15) 

 

The state estimation performance is influenced by the process and measurement covariance matrices (𝑄 

and 𝑅). It can be assumed that the state variables are uncorrelated, thus diagonal matrices are defined as in 

(16) and (17). 

 

𝑄 = diag(𝜎𝑥
2, 𝜎𝑦

2, 𝜎𝜙
2 , 𝜎𝑣

2) (16) 

𝑅 = diag(𝜎𝑔𝑝𝑠,𝑥
2 , 𝜎𝑔𝑝𝑠,𝑦

2 ) (17) 

 

3.3. Simulation results 

The performance of the Kalman filter for robot pose estimation based on the described experimental setup 

is evaluated for two scenarios. The algorithm was implemented in MATLAB/Simulink framework. The 

robot executed piece wise constant control speeds. The covariance matrices were set up as: 𝑄 =
diag(0.01,0.01,0.0003,1) and 𝑅 = diag(1,1).  The simulations lasted for 60 s and the sampling time was 

0.1 s. Fig. 2 and Fig. 3 highlight the simulation results, where the blue line shows the true state of the robot, 

the red line indicates the state prediction results based on encoder measurements, the yellow dots show the 

GPS updates, while the purple line indicates the performance of the EKF algorithm, i.e., the state 
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estimation results. Tab. 1 and Tab. 2 present the root mean square (RMS) and the standard deviation (STD) 

of the errors for the two scenarios, which can be calculated using (18) and (19).  

  

RMS = √
1

𝑁
∑𝑒𝑖

2

𝑁

𝑖=1

 (18) 

STD = √
∑ (𝑒𝑖 − �̅�)2𝑁
𝑖=1

𝑁 − 1
 (19) 

  

where N is the number of measurement points, 𝑒𝑖 is the error at the ith point, and �̅� is the mean error. 

It can be seen from the results that the encoder-based state determination does not provide reliable results. 

This outcome was expected, since the encoder is sensitive to parasitic accelerations, uneven terrain, and 

slippage, therefore the inevitable noise generates drift during the integration process. However, the EKF 

successfully combines the short-term accurate encoder results with the GPS updates, thus providing 

reliable state estimation results for the high-level controllers.  

 

 

Figure 2: Simulation results in the first scenario 

 

Table 1. Errors (m) in the first scenario 

Method 

X axis Y axis 

RMS STD RMS STD 

Encoder 2.7038 2.0510 4.0825 2.7861 

EKF 0.1218 0.1218 0.1656 0.1491 
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Figure 3: Simulation results in the second scenario  

 

Table 2. Errors (m) in the second scenario 

Method 

X axis Y axis 

RMS STD RMS STD 

Encoder 7.2668 4.6859 7.2668 1.9872 

EKF 0.1227 0.1226 0.1650 0.1647 

 

4. CONCLUSIONS 

The Kalman filter is one of the most popular choices for solving the localization problem of mobile robots. 

If the system is characterized by uncertainties, then the estimation of robot pose cannot be performed with 

deterministic approaches. The Kalman filter offers an effective way to address the vagueness of the system; 

it fuses the information provided by different sources and derives the optimal state estimate with 

suppressed noise and uncertainty components. Mobile robots operate in environments, where the terrain 

conditions often change. Variable environment is effectively handled by adaptive strategies, which 

measure the external disturbance magnitudes and vary the filter parameters during real time operation. 

In this paper, the performance of the EKF was evaluated for pose estimation of a mobile robot. Two 

scenarios were tested based on the experimental setup. The obtained results showed that the encoder-based 

state determination does not provide reliable results, while the EKF successfully combines the short-term 

accurate encoder results with the GPS updates and provides reliable state estimation results. 
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