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Abstract. In this paper we study the following nonlinear Klein-Gordon-Maxwell sys-
tem

—Au+ [mf— (w+ ¢)?Ju=f(u) inR3

Ap = (w+ @)u in R3,
where 0 < w < myg. Based on an abstract critical point theorem established by Jeanjean,
the existence of positive ground state solutions is proved, when the nonlinear term
f(u) exhibits linear near zero and a general critical growth near infinity. Compared
with other recent literature, some different arguments have been introduced and some
results are extended.
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1 Introduction

This article is concerned with the following Klein-Gordon-Maxwell equations

{_M +[m3 — (w+ ¢)u = f(u) inR?, (KGME)

Ap = (w+@)u in R,
where 0 < w < my. We assume that the followings hold for f:
(f1) f € C(R,R) is odd;
(f2) lims—o %S) =-m<0;

(f3) lim‘s|_>+oo fs(ig) =K>0;
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(f1) there exist D > 0 and g € (2,6) such that f(s) +ms > Ks®> + Ds?~! for all s > 0;

(f5) there exists constant v > 2 such that f(s)s — yF(s) > 0 for all s € R, where F(s) =
fo f(t)at.

This system is well known as a model describing the interaction between the nonlinear
Klein—Gordon field and the electrostatic field. The presence of nonlinear term f(u) simulates
the interaction between many particles or external nonlinear perturbations.

In recent years, there is large quality works devoted to the system (KGME), and we would
like to recall some of them. In a remarkable work, V. Benci and D. Fortunato [4] are the first
to study the following system

{—Au + [m3 — (w+ ¢)?Ju = [ulP2u inR3, w1

Ap = (w+ @)u in R3,

using the variational method, the authors proved the existence of infinitely many radially
symmetric solutions when mp > w > 0 and 4 < g < 6. In [15,16], D’Aprile and Mugnai con-
sidered the case 2 < p < 4 and established some non-existence results for p > 6. Afterwards,
there are also more literatures focusing on the existence and multiplicity of solutions for the
problem (KGME). See [12,13,19] and the references therein.

There are some results related the critical case. In [11], Cassani considered the following
system with the critical term:

{—Au + [m3 — (w + @) u = plulP2u+ [ul* 2u  in TR, 12)

Ap = (w+ @)u in R3,
where u > 0. He showed that system (1.2) possesses a radially symmetric solution under one
of the following conditions:

(i) 4 < p <6and |mg| > |wl;
(i) p=4, |mo| > |w| and u large enough.

Soon afterwards, the authors of [9] studied the following critical Klein-Gordon-Maxwell sys-
tem with external potential:

{—Au+uV<X>u—(2w+¢)qv2]u=Af(u>+!u!5 in IR, W

Ap = (w+ @)u in R3.

Provided f(u) satisfying assumptions:

(f1) af(wu—F(u) >0.
They obtained a nontrivial solution for (1.3). For more related results, we refer the readers to
[3,24].

The existence of ground state solutions, that is, couples (u, ¢) which solve (KGME) and
minimize the action functional associated to (KGME) among all possible nontrivial solutions,
has been investigated by many authors. Inspired by the approach of Benci and Fortunato,
Azzollini and Pomponio [10] proved that (1.1) admits a ground state solution provided one of
the following assumptions:
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(i) 3<p<5and my > w;

() 1<p<3 my/p—1>w\/6—p.

Soon afterwards, Carrido et al. [22] dealt with the critical Klein-Gordon-Maxwell system
(1.2) with potentials. Combining the minimization of the corresponding Euler-Lagrange func-
tional on the Nehari manifold, they proved the existence of positive ground state solutions
for system (1.2). Very recently, Moura, Miyagaki et al. [14] considered quasicritical Klein—
Gordon-Maxwell systems with potential, and obtained positive ground state solutions. For
other related results about Klein-Gordon-Maxwell systems the authors maybe see [7,17,25].

Here we also mention that the papers [2, 6], Berestycki and Lions studied the following
elliptic equation

—Au=f(u), ueH(RM). (1.4)

Under the following conditions on f(u):
(A1) f(u) € C(R,R) is odd;

(Ay) —oo < liminf, o+ f(u”) < limsup,_,,: @ = -m < 0for N > 3 and lirnu%()@ =

—m < 0for N =2;

(A3) when N > 3, —co < limsup,,_, fh(ﬁ)z < 0; when N = 2 for any a > 0, there exists

uN—

Cy > 0 such that f(u) < Cyexp(au?) for u > 0;

N

(A4) there exists ¢ > 0 such thatF(¢) = [; f(s)ds > 0,

Berestycki and Lions [6] proved the existence of a positive least energy solution when N > 3
and Berestycki et al. [2] investigated the existence of infinitely many bound state solutions
when N = 2. Under the above assumptions, Azzollini, d’Avenia and Pomponio [1] obtained
the existence of at least a radial positive solution to a class of Schrodinger-Poisson problems,
and Azzollini [28] proved the existence of ground state solutions for Kirchhoff-type problems,
and soon after Zhang and Zou [27] investigated the existence of ground state solutions of the
problem (1.4) with the critical growth assumption on f(u).

Under the assumptions (f1)-(f5), Zhang [21] studied a class of Schrédinger—Poisson prob-
lems and established the existence of ground state solutions for g € (2,4] with D large enough,
or g € (4,6), where m = 0; Liu [20] considered a Kirchhoff-type problem and obtained the
existence of ground state solutions without (f5).

Motivated by the above mentioned works, in particular by [9,20,21,27], the main purpose
of this paper is to consider the existence of positive least energy solutions of (KGME) with
a general nonlinearity in the critical growth. To our best knowledge, under the assumptions
(f1)-(fs), there is no work on the the existence of positive ground state solutions for problem
(KGME). Precisely, we have the following results.

Theorem 1.1. If (f1)—(fs) hold. Assume that either q € (2,4] with D sufficiently large, or q € (4,6),
then the problem (KGME) possesses a positive radial solution if one of the following conditions is
satisfied:

(i) 2<y<3and0 < w < +/(y—2)(4—7v)mp,

(i) 3<y<ooand 0 < w < my.
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Theorem 1.2. If (f1)—(f5) hold. Assume that either q € (2,4] with D sufficiently large, or q € (4,6),
then the problem (KGME) possesses a positive ground state solution provided one of the following
conditions holds:

(i) 2<y<3and0 < w < +/(y—2)(4—7)mp;

(i) 3<y<ooand ) < w < my.
Theorem 1.3. If we replace the condition (fs) by the following condition:

(fo) there exists v > 2 such that t :— £t g increasing on (—o0,0) and (0, +o0).

tr-1

Then the conclusions of Theorems 1.1 and 1.2 remain true.

Remark 1.4. Assumptions ( f1)—(fi) were used by [20,21]. Since the problem in [20] is different
from ours, the methods used in [20] do not work here. The similar hypotheses on f(u) as
above (f1)-(f5) are introduced in [21], where the authors used a cut-off functional to obtain
bounded (PS) sequences. However, our device is different from the main arguments of [21].
Moreover, the results of [21] hold under v > 3, and in our case, v > 2.

Remark 1.5. The condition (fi) plays a crucial role to ensure the existence of ground state
solution to the problem (KGME). And the condition (f5) is a technical condition to overcome
the difficulty caused by the critical exponential growth case.

In our paper, due to the presence of a nonlocal term ¢ and the effect of the nonlinearity
in the critical growth, there exist several difficulties to solve. In the first place, the lack of the
following Ambrosetti-Rabinowitz growth hypothesis on f :

Jpu>4st.0<uF(s) <sf(s), VteR

brings a obstacle in proving the boundedness of (PS) sequence. To overcome this difficulty,
we will use approaches developed by Jeanjean [23] to obtain the boundedness. In the next
place, since we deal with the critical case, the Sobolev embedding H!(RR®) < L°(IR®) is not
compact, and the functional I does not satisfy (PS). condition at every energy level c. To
avoid the difficulty, we try to pull the energy level down below some critical level ¢ (Section
3). In the end, we apply the Strauss’ compactness result [5] to obtain the convergence of (PS)
sequence.

An outline of the paper is as follows. In Section 2, we give some preliminary lemmas.
Section 3 is devoted to the existence of the mountain pass solution and positive ground
state solution. Throughout the paper we denote by C the various positive constants. Let
DY (R®) = {u € L°(R®) : Vu € L?(R3)} be the Sobolev space equipped with the norm

2
w2, = [gs [Vul?dx. S = inf M denotes the best Sobolev constant.
ueDV2(R3)\{0} (fgs [u/*dx)3

2 Preliminaries

In this section we give notations and prove some preliminary lemmas. Let us define an
equivalent norm on H!(IR?), that is

|ul|*> = /3(|Vu|2+mu2)dx for fixed m > 0.
JR
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For any 1 < s < oo, we denote that L?(IR%) is the usual Lebesgue space endowed with the
norm [[u|$. = [gs [u|*dx. Then we have that, for 2 <'s < 2%, H'(R®) < L¥(R?) continuously.
Let H := H}(R®) := {u € H'(R®) | u is radial functions}. Then H — L(IR%) is compact for
2 <s < 2%

According to the variational nature of (KGME), we define its the energy functional as
follows:

O(u,9) = [ (VuP = Vgl + [ — @+ 9Phd)dx— [ Fdx. @)

Under the assumptions (f1)—(f2), by standard arguments, we can prove that ®(u, ¢) is a
well defined C!' function on H'(RR®) x D'?(R®) and that the weak solutions of (KGME) is
critical points of the functional ®. Obviously, the functional @ is the strongly indefiniteness,
which means that it is unbounded both from below and from above on infinite-dimensional
subspaces. In order to avoid this indefiniteness, we apply the reduction method developed by
Benci and Fortunato [8]. For deducing our results, we introduce the following results whose
idea of proof comes from [15,16].

Lemma 2.1. For any u € H'(R3), there is a unique ¢ = ¢, € D'?(R3) which satisfies the following
equation
—Ap + gu* = —wu?, (2.2)

Furthermore the map ¥ : u € H'(R®) — ¢, € DY?(R3) is continuously differentiable and

(i) in the set {x : u(x) # 0}, forw > 0,

—w< <0

(ii) || pullpra < Cllull® and [gs |ulu*dx < Cllull3,.

Multiplying (2.2) by ¢, and integrating by parts, we obtain

/]R3 |V, |2dx = — /]R3 u?@idx — /11{3 wu? @ydx. (2.3)

Lemma 2.2. If u, — u in H'(IR®), then, up to subsequence, ¢y, — @, in DV2(R3). As a conse-
quence, ¥'(u,) — ¥'(u) in the sense of distributions.

By the definition of ® and (2.3) the functional I(u) = ®(u, ¢) may be rewritten as the
following form

I(u) = % /]RS(|Vu]2 + (m3 — w?)u? — weu?)dx — /]R3 F(u)dx. (24)

In view of Lemmas 2.1 and 2.2, the conditions (f1)—(f3) imply I(x) € C! and its Gateaux
derivative is

(I'(u),v) = /IRS[Vqu + (m} — w)uv — (2w + @) puuv)dx — /]R3f(u)vdx (2.5)

for all u,v € H. Then (u, ¢) is a weak solution of (KGME) if and only if ¢ = ¢, and u is a
critical point of I on H.
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For simplicity, in this paper we may assume that K = 1. Set g(f) = f(t) + mt, so the
functional I is reduced as

) = 5l + 5 [ 08— @y~ o [ wpaldx— [ Glwds, @)
2 R3
where G(s fo t)dt. In the following we give the abstract result established by Jeanjean
[23].

Lemma 2.3. Let (X, || - ||) be a Banach space and h C R an interval. Consider the family of C!

functionals on X
Ja(u) = A(u) —AB(u), Ach

with B nonnegative and either A(u) — +o0 or B(u) — +o0 as ||u|| — co and such that J,(0) = 0.
For any A € h, we set

Ty = {7y € €([0,1], X) : 7(0) = 0,7(1) <0}
If for every A € h the set T’y is nonempty and

— inf £)) > 0.
¢ = inf trél[oa,ﬁh(v( )

Then for every almost A € h there is a sequence {u,} C X such that
(1) {un} is bounded;
(i) Ja(un) = cp;
(i) J4(un) — 0in the dual X! of X.
In our case, X = H, h = [},1],

Alw) = ol + / yuldx — - / wpuidx,  Bw) = [ Gz,
2 R3
and so the family of functionals we study is
_ L 1 2 2y,2 1 2
I(u) = EH”H + E/Rs(mo—a) Ju“dx — E/H{Sw(puu dx—/\/]RaG(u)dx. (2.7)

and for every u,v € H,
(I\(u),0) = /3(Vqu + muv)dx + /3(m% — w?)uvdx
R R

—/ (2w + @y) puuvdx — A/ u)vdx. (2.8)

We shall use the following PohoZaev type identity. Its proof can be done as in [16].
Lemma 2.4. For A € [1, 1], let u € H be a critical point of I, then

Py(u) : 2/ |Vul?dx + = /muzdx—kg

1
—5 ]R3(5w + 2, @uutdx — 34 /]R3 G(u)dx = 0.

If A =1, the above PohoZaev equality turns to be the following

(m% — w?)utdx

1 3 3
P(u) := 5 /]R3 |Vu|?dx + 5 /]R3 mutdx + 5 ]R3(m% — w?)udx

1
T2 ks (5w + Z(Pu)(PuUde - 3/]R3 G(u)dx = 0.
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Next we shall cite a variant of the Strauss compactness result [5], which plays a fundamen-
tal tool in our arguments:

Lemma 2.5. Let P and Q : R — IR be two continuous functions satisfying

Let {vn}n, v and ¢ be measurable functions from RN to R, with z bounded, such that

sup [ 1Q(en(x) pdx < e
P(v,(x)) = v(x) ae. in RN, asn — +oo.

Then for any bounded Borel set B one has ||(P(vy) — 0)§||11(5) — 0. Moreover, if

. P(s) _
I oe) ~ Y
lim sup |v,(x)| =0,
|x| =400 4

then

[(P(vn) —0) [l igny — 0 asn — oo

3 Proof of main results

In this section we will look for a positive ground state solutions of (KGME). First, we will
prove the existence of a mountain pass solution. Now, we give several lemmas which imply
that I, satisfies the conditions of Lemma 2.3.

Lemma 3.1. Assume that (f1)—(fa) hold. Then
(i) T)h # @ for every A € h;
(ii) there exists a constant ¢ such that ¢y > ¢ > 0.

Proof. (i) For any A € h, it follows from Lemma 2.1, (2.7) and (f4) that

1 D
2 2 o 2 o 6 _ q
Ih(u) < 2H”H 2/ dx 2/ weuudx 1 ]R3!u\ dx 2% /RSM dx.
Then
Iy(tu) < t‘ZHuH2 tZ/ mouzdx——t6/ |u|®dx — 1.“’/3 |u|dx.

Then we can choose ty > 0 large and u € H\{0} such that I, (tou) < 0 for every A € h. Define
71 :[0,1] — H in the following way

Y1(t) = thou, 0<t<1.

It is easy to see 71 a continuous path from tyu. Moreover, for every A € h, I(1(1)) < 0 and
I)(71(0)) = 0. The proof is completed.
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(ii) Using (f1)—(f3), for any ¢ > 0 there exists C¢ > 0 such that |g(u)| < e|u| + C¢|u|*. Then by
Sobolev’s embedding theorem, one has

1, ., ¢ 2 Ce 6 m—e ., CCop 6
> - - - > ° -t _
B > gl =5 [ Py G [ jutede > S ) - = ul

For fixed € € (0,m), there exists ¢ > 0 such that Iy (u) > ¢ > 0 for any A € h and u € H with
||| = p small enough. Now fix A € hand 7y € T'). Since y(0) = 0 and I,(y(1)) < 0, certainly
|l7(1)]] > p. By continuity, we deduce that there exists £, € (0,1) such that ||y(t,)| = p.
Therefore for every A € h

c) > mfIA( (ty)) >¢>0,
y€l,

which implies (ii) of Lemma 3.1. O
It follows from Lemma 3.1 that the conclusions of Lemma 2.3 hold.

Lemma 3.2. Assume that (f1)—(fa) hold. If g € (4,6) or q € (2,4] with D is large enough, then
* 14—4c2
ey < ¢y i=3A7282.

1
Proof. For g,r > 0, define u,(x) = % where ¢ € C3°(B2,(0)),0 < ¢ < 1and ¢lp ) = 1.
e+ |x
1
And it is well known that the best Sobolev constant S is attained by the functions ( 74‘2)1 .
e+|x|%)2
Direct calculation yields that
/3 Vue|?dx = K; + O(e}), /3 lie[0dx = K + O(e}) (3.1)
R R
and
Kes, te2,3),
/ |ue|'dx = { Keillne|, t=3, (3.2)
R3

Ke't',  te(3,6),

_1
where Kj, K3, K are positive constants. Moreover, S = K;K, °. Using (3.1) and (3.2), we have

<fR3 ugdx)%

NI

+ O(e2).
Set

_12 2 12 2 2 2 A6 6
§(0) = 5PNl + 32 0mF =) [P — 210 [ o

2 2,2 2
It is easy to see that g(t) attains its maximum at t) = [HUEH +(Am} 3Tu)\6f5; b dx]% and then
& Ji3 e
1 2 (13 — ) e fo 2
maxg( ) 7)\—% [ HuEH ) ]3 0 € R3 %€
=0 2 (Jgs lueldx)3 Js Jteloddx
o Lt b [Tl )+ (0 —2) s P
2 Jio ’“F-’ dx

S3

NI

BS J [uusnz + = ?) s fPx 1,
3

6 (Jo luelodx)s
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for ¢ > 0 small enough. Obviously, there exists 0 < ' < 1 such that, for ¢ < 1, one has
Low w2 Lo o o 2/ 2 2/ 2
< il — _
tlrgg(oh(tug(x)) < max <2t || ue ||~ + 2(m0 w)t . |ue|“dx + Ct o e |“dx
1
< CPlug|? < g)r%s%. (3.3)
Using (f1), (2.7) and Lemma 2.1, one has
Iy (tue(x)) = ftzH eI? + ftz/ m3 — w?)uzdx — tz/ WQp, utdx — A/ (tue)d

1 1 A
< §t2|]ug||2+ Etz /]R3(m% — wHutdx — §t2 /lewq)tusuedx— gtz /]R3 |ue|®dx

_AD e |9dx
q 3
1 AD
= g(t) - Etz /IRS a]thuSugdx - 7 /IR3 |u8|qu
< g(t) +Ct2/ |ue|?dx — CDt"/ e |Tdx. (34)
RR? RR3
It follows from (3.4) and Lemma 3.1 that
Lim Iy (fue(x)) = —oo (3.5)
and
I)(tug(x)) >0 (3.6)

as t is close to 0. Now we prove that there exists 0 < g9 < 1 such that lim; e I) (fue(x)) < 0
uniformly in € € (0,¢). Set

1 1
Eﬂ(rng —uJZ)/]R3 |ue|*dx — Etz /]stgotugugdx

—At6/ |u€]6dx—wtq/ |ue|Tdx.  (3.7)
6 R3 q R3

Following from (3.5) and (3.6), (3.7) means that there exists t, > 0 such that #(t,) = 0 and for
t >t 1(t) <0. Then we get

1
1) = P el +

1 1 1
0= (1) = B Gl + 3008~ ) [ el = 3 [ g

A .. AD .
gl / e |°dx —7t /3|Hs| dx), (3.8)

1
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where ¢y is small enough. (3.9) implies that for some t* > 0, t, is bounded from above
uniformly for e € (0,¢p), where t* is independent of €. Using (3.5) and (3.9) we easily get that
there exists 0 < ¢y < 1 such that lim;_,e I} (ftte(x)) < 0 uniformly in ¢ € (0,¢&p). Thus there
exists ' > t* such that for € € (0,¢),

1
I

max I (fue) < = 283, (3.10)
tZt” 3
It follows from (3.1), (3.2) and (3.4) that
max Iy (tue) < g(to) —I—C/ |ue|?dx — CD/ | |Tdx
t”tht, R3 R3
X (3.11)
:fk%ﬁ+0@ﬂ—CD/|mwx
3 R3
For q € (2,4] and D sulfficiently large, € € (0, ¢9) fixed, we derive from (3.11) that
1, 1.3
max I (fue) < sA72852. (3.12)
t//ZtZt/ 3

For q € (4,6), observe that % < %, then it follows from (3.2) and (3.11) that, there exists

0 < €1 < g small enough such that for ¢ € (0,¢1),

—_

A"253. (3.13)

ST

O

It follows from (3.3), (3.10), (3.12) and (3.13) that ¢y, < ¢} := %)F Sz.

Lemma 3.3. Assume that (f1)—(f3) and (fs) hold. Let {u,} be a critical point for I (u,) at level c,.
Then I (uy) > 0.

Proof. If v > 4 in (f5), then it follows from (f5), (2.7) and (2.8) that

Iv(upr) = Iy(uy) — i(lﬁ(“)\)r“ﬁ

1 1
= (375) o 70+ 0 - ot

2 1 1 1
+ /]R3 {(’)’ B 2> wqou"u%\ + ,),4)%1)\”%\] dx + /]R3 {,yf(u?\)u)\ - F(M/\) dx

> (1—1>/ |Vuy|?dx > 0.
2 v/ JRr3

(3.14)
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Now, we consider 2 < ¢ < 4in (f5). By (f5), (2.7) and (2.8) and Lemma 2.4, we obtain that

2 2 —
Li(up) = Li(up) — EUX(MA)/“A) - 2(6_77)1%(%)
_ 1 2 10 -3y 2 2\,.2
= i) = { [ 3V + 20— [ (o - i
B 18 — 5y 82y ,
o e een + arg—gy i (315
2 6(2—1) '
—A —_— F d
/]R3 [6 — 7f(MA)MA + 26— 1) (”/\)] x}
_r—2 22y 2 23—-17) d—7 5| »
= 6—()//1{3(1,”0 w )u)\dX"—/le |:6_r)/w(P”)\+6_r),§0uA u)\dx
2
+ m)& /]R3 [f(ur)up — yF(uy)ldx.
Set h(t) = (4 — v)t* + 2(3 — )wt. We distinguish two cases:
Case 1.3 <y <4and 0 < w < my. In this case, one has
h(t) >0, V-—w<t<O. (3.16)
Note that —w < ¢,, <0. From (fs5), (3.15), (3.16), we have
-2 2 2\ 2
I(uy) > —— | (mg—w”)usdx > 0. (3.17)
6 — 7 JRr3

Case 2. 2 <y <3and 0 < w < /(y—2)(4—9)mp. For V—w < t < 0, an elementary
computation means that

(7 = 2)(m — @)+ 5(8) = (7= Domo @) + (4= N+ 22— Do)
> (y—2)(mo — ) - 4:?2w2 (3.18)
GRS L S
Then from (f5), (3.15) and (3.18), we get
W) > ooyl == —a?) [ iddr >0 (3.19)
It follows from (3.14), (3.17) and (3.19) that I (i1,) > 0. 0

Lemma 3.4. Assume that (f1)—(fs). For almost every A € [3,1], there is uy € H\ {0} such that
I (up) = 0and I)(uy) = cy.

Proof. By Lemma 2.3 and Lemma 3.1, for almost every A € [1,1], there exists a bounded (PS)
sequence {u,} C H such that

(1) = ¢y, I} (uy) =0 in H, (3.20)
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where H' is the dual space of H. Using Lemma 2.2, up to a subsequence, we can suppose that
there exists u € H such that

u, — uy, weaklyin H,
u, —uy, inLF(R%), 2<p<6,

3.21
U, — u, a.e.in IR3, ( )

Pu, — Qu, weakly in D1'2(1R3).

If we apply Lemma 2.5 for P(t) = g(t) — t°, Q(t) = £ {vn}n = {tin}n, v = g(up) — u3 and
P € CP(R3). By (f2)—(f1) and (3.21), we have

/ (g(un)—u 1/de—>/ (up —MA)lde (3.22)
R3

If we apply Lemma 2 5 for P(t) = F(t) + smt? — 1t% = G(t) — L%, Q(t) = 2+ 5 {v,}n =
{un}n, v =F(up) + 3mu3 — tu§ = G(uy) — tu§, and ¢ = 1. By (f2)-(fs) and (3.21), we have

/IR3 <G(un) — éufl)dx — /]R3 (G(uA) — %uﬁ)dx. (3.23)

Similarly, we also have

/]R3(g(un)un - ufl)dx — /W(g(uA)uA — ug)dx. (3.24)

Introduce the notation Y = Supp(¢). Using (3.21) and the Sobolev inequality, one has

< [ oullid =gl -+ [ 1ow, = gu Il [pldx

: :
([ loulian) " ([ 103~ sdtax) " suplyl 625)
; :
6
([ gw = gutian) " ([ 1diar) " sup ] = o),

‘/]RS(Q"W”%I/’ - q’u,\”ilp)dx

IN

and

< [ @ullin = urllglax+ [ 1o, = gu |l [plex

6 % 6 %
(/1123 | Pu, | dx) (/Y!Mn—mbdx) sup || (3.26)
L\ %
(19w = gutian) " ([ mlfar) " sup ] = o),

/]Rs((/’un“nl/’ — Quyurp)dx

IN

and

< [ ok i —wmallplax+ [ 192, — @2, llunlplax

(/1123 ’%n\édx> 6 (/ |un — “/\|ng> ’ sup || (3.27)
(1 - ek de) ([ IuAlédX> sup lf] = o(1).

[ (G —

IN
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It follows from (I} (u,), ) = 0, (3.21), (3.22), (3.26) and (3.27) that

/]R3(VM)LV1,U+MM/\1[J+ (mé—wz)um/;)dx—/ (2w + @u, ) Pu, urpdx
—A/ (upr)y —qude—A/ uspdx = 0,

ie. Ji(upr) =0, where

) = 5l + 2/ Zw—f/cwud
—A/ —fu x—— IR3

Set v, = u, — u). Then v, — 0 in H. Following from the well-known Brezis—Lieb lemma [18],
we get

[onll3 = llall3 = lJurllz +o(1),
IVoul3 = IVunllz = [IVurll +o(1), (3.28)
lonll§ = llunllg = Nuall +o(1).

Then, by Lemma 3.3, (3.24), (3.26), (3.27), (3.28), J (1) = 0 and J} (u,) = 0, we have
o(1) = (J3(un), un) — (Jy (ur), ur)

(3.29)
= ol + (3 = ) [oul3 =2 [ Jou[*dx.
Up to a subsequence, we may assume that [v,||? + (m3 — w?)|va||3 — | > 0. By (3.29),
A Jra 17n 6dx — 1. If | > 0, then the Sobolev embedding theorem means that S < W <
]R3 Un X
lonll+ (o )‘]‘U"HZ which implies that
(Jg3 lonl®dx)3

1> A"283. (3.30)

By (3.20), (3.21), (3.23), (3.25) and (3.28), we get

C)r — I/\(MA) = I/\(un) — IA(MA) + 0(1)

(3.31)

= SlonlP+ 5 [ = @d)ofrdx = 5 [ onlfx +o(1).

Then, by (3.30)—(3. 31) we have ¢y — I (uy) = %l > %/\*ESE, by Lemma 3.3, which contradicts
with ¢y — I () < 3A~ 257 since that I, (1,) > 0. Therefore, | = 0, i.e. |[v,]> = 0(1), hence
u, — uy in H. This completes Lemma 3.4. O
Proof of Theorem 1.1. According to Lemma 3.4, there exists sequences {A,} C h with A, —

1
1 cr, € (0,3A, 267) and a sequence of {u,,}, denoted by {u,} such that I, (u,) = c,, and
I3 (un) = 0. Next we show {u,} is bounded. The proof will be developed in several steps:
Indeed, by Lemma 2.4, I, (ux) = ), and I} (u,) = 0, we have

% o | Vit |2dx + % ro (M3 — w?)uldx — % Jgs (5w +2¢u, ) pu,urdx — 3A, [gs F(uy)dx =0,
%fWHVun]z—i—(m%—wz)u%—wqoun Zdx — Ay Jrs F(up)dx = c;, < c1,
JralIVutn|? + (mg — w?)ug — (20 + @u, ) u, uz)dx — A [ f (un)undx = 0.
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Step 1. If ¥ > 4 in (f5), then it follows from (3.14) that
Loy
> cp, = I, (un) = Iy, (un) — ;<IA,1(“n)run>

o (3.32)
> (3-2) L9+ 03— w2l > P

Thus, we deduce from (3.32) that {u, } is bounded in H if ¢y > 4.
Step 2. If 2 < v < 41in (f5), we distinguish two cases:

Case 1.3 <y <4 and 0 < w < myp. Following from (3.17), we have

>y, = Iy, (uy) > H/ (mf — w)uZdx. (3.33)
6 —v Jr3

Case2. 2 <y <3and 0 < w < /(v —2)(4— v)my. From (3.19), we have

N\»—'

>, = I, (1) 2 ey [(r = 2) (4= ) — ] /IR Jindx. (3.34)

Deriving from (3.33) and (3.34), we get the boundedness of ||u,||2. Then by Lemma 2.1, one
has

N\*—'

0< / —wey,usdx < / w?uidx < C. (3.35)
R3 R3
Thus from Lemma 2.4 and (3.35) we deduce that
1 1 2 1 2
gpz\n(”n = g/ |V, |“dx + —/ W+ Qu,) Pu, Updx

_3/ |V |?dx + = /wq)unu dx > = /|Vun|2dx—

2 I)\n (u”) -

N\»—l

which means the boundedness of {||Vu,|»}. This completes the proof. O

Note that I(u,) = In, (un)—(Au—1) [gs F(un)dx and I'(un) =1, (un)— —1) Jgo f(tn)undx.
By using the fact that the map /\ — ¢, is left-continuous (see [23]), A, —> 1 the boundedness
of {uy,}, we can show that

m I(u,) =cy,  lim I'(uy) = 0.

Lemma 3.4 yields that there exists up € H \ {0} being a critical point of I and I(u9) = ¢1. Set

10 = glulP+ 5 [ = w?tdx =5 [ wpalds

- 6 = + 16
_(/R3G(u)dx 6/R3|u\ dx) 6/Rz|” 6dx,

where u™ = max{u,0}. Repeating all the calculations above word by word, there is nonzero
function ug solving the equation

—Au+ (m — w?)u+mu — weu = (g(u) —u’) + (u™)>. (3.36)
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Using u~ = max{—up,0} as a text function and integrating (3.36) by parts, we obtain
0= /}RS(WuO_\Z + mlugy >+ (m§ — w?)|uy [*)dx
— /]1{3 W@uy |1ty [2)dx — /Ra(g(uo) — ug)ug dx.

We deduce from (f1) and (fy) that g(¢) — t° is an odd function and g(t) — > > 0 for t > 0. So
from (3.37) one has

(3.37)

0= /H{3(|V“6‘2 +m\u6!2 + (m% — wz)]ua\z)dx — /stcpuo|ua]2)dx.

From Lemma 2.1, we obtain that #, = 0 and uy > 0. Then 1 is a nonnegative solution of the
problem (KGME). Deducing from Harnack’s inequality (see [26]), we can obtain that 1y > 0
forall x € R3, and 1 is a positive critical point of the functional I(u). Then by Lemma 2.1, we
have ¢ = ¢,,. From (2.1), (2.3) and (2.4) that (uo, ¢,,) is a positive solution of (KGME). The
proof is complete. In what follows, we prove the existence of a positive ground state solution
for the problem (KGME).

Proof of Theorem 1.2. Set 71 := inf{I(u) : u € H\ {0}, I'(u) = 0}. According to the argu-

ments as above, we know that 0 < m < ¢ < ¢] := %S 5 By the definition of 7, there exists a

sequence {u,} C H such that u, # 0, I(u,) — 7 and I'(u,) = 0. Similar to the arguments as
Step 1 and Step 2 in Theorem 1.1, we obtain the boundedness of {u,} in H. Since I' (u,) = 0,
we deduce from (2.3), (2.5), (f1)-(f3) and the Sobolev embedding inequality that

il = [ (V00 mlaa 2+ (0 = ) o)+ [ 219, P+ 3, 2l
_ [ 2 6
= [ gmadx <e [ (unf? + lun|)ax,

and so, there exists C > 0 such that ||u,|| > C. Then we can claim that there exists ¢ > 0 such
that

lim sup lun|?dx > o > 0. (3.38)
}/GRB By y)

Otherwise, lim;_ e Sup, cgs fBl ) |un|2dx = 0. Using Lemma 1.1 of [26], it follows that, for

2<s<6, fIR3 |uy|*dx — 0in L*(R3). Using the same arguments as Lemma 3.4, we can obtain

m > cj = %S%, which contradicts 71 < ¢} := 1S 3. Then (3.38) holds. Going if necessary to a

subsequence, by (3.37), we may assume the existence of y, € R? such that
/ \un\zdxz g>O.
B1(yn) 2
Set v, (x) = uy(x + yu). Then
‘ o
loall = lall, [ foulPdx = 7 >0,
B1(0) 2

Since @y, (X + yn) = ¢0,(x), by (2.4), (2.5), we have

I(v,) — m, I'(vy) = 0.
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From the boundedness of {u,} in H, {v,} is also bounded. Then there exits vy # 0 such that
v, — vy weakly in H. In view of Lemma 3.4, one can conclude that

(I'(v0),v0) =0,  I(vg) = 1. (3.39)

On the other hand, we will prove that 11 > I(vy).
In fact, if ¥ > 4 in (f5), by (2.3), (2.5), (3.39) and Fatou’s lemma, one has

n—o0

(2] s
R A e S
> (572 ) fulIvenf + (o — o?)edlas

2 1
+/]R3 [(7 - 2>wq)vovo—|— q)vovo] dx+/ [ f(vo)vg — F(vo)]dx

= I(vo) — i(f/(vo)wo) = I(vo).

fi = lim {I(vn) - }y(l’(w),w)}

f2<y<3in(fs)and 0 < w < \/(y—2)(4d—79)mpor3 <y <4in (f5) and 0 < w < my,
by (3.15) and Fatou’s lemma, one also has

m:yg{mw—;:ﬂWﬂw%dé;waﬁ
- %{g_‘:j/ (h — )l + [ [2 w(pvn#ézqo%n} o3
72+627¢4JﬂwwanWMM} 4 s
ZH/RS( dx+/ [ vo*ﬁ 30}000135
/Umm—www
:ﬂw>6dﬂwww 36—y Pn) = 1(00)

Combining (3.39), (3.40) with (3.41), we derive that I(vg) = m = inf{I(u) : u € H\ {0}} >
0. Arguments as Theorem 1.1, we get vy > 0. Thus, by Lemma 2.1, (2.1), (2.3) and (2.4),
(v0, @uy) € H x D2(IR?) is a positive ground state solution of problem (KGME). The proof is
complete. O

Proof of Theorem 1.3. It is sufficient to prove (f5). Indeed, by (fs), whenever u > 0,

F(x,u) /fxutudt /fx”t 7t71dt</f uTtdt = }Yf(u),
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and whenever u < 0,

F(x,u) = /01 f(x,ut)udt = — /01 (f(x’ut)(—u)"*ﬂ_ldt

—ut)'Y_l

1 1
= [ ) ey < - S g = Lug(u),
o |ut|r1 o [ur1 i
The above results mean (f5) holds. The proof is complete. O
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