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Abstract. Emotional conditions play a significant role in forensic voice compar-
ison and speaker verification systems. When emotion is present in speech, the 
verification's performance will deteriorate. In this paper, speaker verification has 
been investigated and analyzed in the case of emotional speech using metrics 
evaluating the performance of forensic voice comparison using pre-trained 
speaker embedding models: x-vector and ECAPA-TDNN for embedded feature 
extraction. This study investigates whether emotional content affects the forensic 
voice comparison and verification performance evaluated on a Hungarian speech 
dataset. The speaker verification performance has been assessed using the likeli-
hood-ratio framework using Cllr and Cllrmin and Equal Error Rate. The ECAPA-
TDNN achieved higher performance than the x-vector. In the same emotion sce-
nario, the best EERs were 2.6% and 7.7% for ECAPA-TDNN and x-vector. Both 
models are sensitive to the emotional content of the speech samples. 

Keywords: Forensic voice comparison, speaker verification ; x-vector, ECAPA-
TDNN, likelihood-ratio framework. 

1   Introduction  

Speaker recognition is usually classified into two major fields: speaker verification (au-
tomatic speaker verification, ASV) and identification  (Sztahó et al., 2021). Speaker 
verification aims to verify if the voice belongs to the claimed identity by comparing the 
voice with another voice in the dataset and verifying whether the same person produces 
it. Unlike speaker identification concept, which aims to identify the speaker by selecting 
one model from a set of enrolled speaker models (Sztahó & Fejes, 2022). One of the 
applications of speaker verification dealing with forensic voice comparison is based on 
comparing an unknown criminal's voice with a well-known suspect’s voice like when 
a DNA sequence is matched with another known DNA profile (Sztahó & Fejes, 2022). 
Furthermore, the decision of speaker verification in such a forensics case is very critical. 
It must present a high level of confidence because the error-prone behavior is critical 
and the error is unacceptable. Due to the behavioral and biological differences between 
people and the way they speak, each person's voice contains unique information. This 
allows people to recognize each person from his\her voice (Arya et al., 2021). The main 
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aim of this study is to analyze and investigate how emotional content affects forensic 
voice comparison and verification performance. The experiments were done on a Hun-
garian speech dataset. 

To compare two samples of voices and judge whether they belong to the same iden-
tity, we need to consider how the voices are similarly based on the features extracted 
from each sample. In the last few years, deep learning has been a significant tool in 
speaker verification and emotional speaker recognition. Studies show that these deep-
learning embeddings outperform previous i-vector based features. However, a lot of 
training data is needed to get a highly efficient model (Sztahó & Fejes, 2022). In this 
paper, we have used two speaker embedding methods commonly used in speaker veri-
fication: x-vector and ECAPA-TDNN. Pre-trained models were applied that are avail-
able in the Huggingface repository. The speaker identities were evaluated in a forensic 
voice comparison framework by calculating the likelihood ratio based on cosine dis-
tance between sample pairs and logistic regression models. 

Recently, in forensic voice comparison, there have been studies dealing with speaker 
verification where emotional content is present (Scherer et al., 2000). An acoustic anal-
ysis regarding the effect of the emotional content of possible automatic speaker verifi-
cation systems shows that an evaluation of training ASV material on emotional speech 
requires in-depth analyses of the individual differences in vocal reactivity and further 
exploration of the link between acoustic changes under stress or emotion and verifica-
tion results. In (Rusko et al., 2018), researchers investigate the weakness of voice as a 
biometric model and try to improve the performance of the verification system. In ad-
dition, they used the emotional speech dataset to increase the diversity of all cases be-
longing to the speaker. The suggested model has been evaluated based on CRISIS da-
taset with six levels of emotion per speaker and used i-vector as embedded features with 
PLDA. In (Shahin et al., 2021), the authors proposed a hybrid deep neural network for 
speaker verification in an emotional case study. Four DNN models (DNN-HMM, DNN-
GMM, GMM-DNN and HMM-DNN) have been used. These models were evaluated 
using three different speech datasets: private Arabic and two English public datasets. 
Their result shows the HMM-DNN outperformed all other models in an emotional and 
stressful environment and shows high performance in terms of equal error rate (EER), 
which was 7.19%. In another work (Prasetio et al., 2020), the authors proposed a 
speaker verification model under stress conditions by applying i-vector and investigated 
the effect of the emotional speaking style in speech. Emotional Variability Analysis 
(EVA) has been proposed which is based on i-vector technique, but it considers the 
emotional effect as the channel variability component. Based on the experimental re-
sult, the proposed model was outperformed the standard i-vector. Biswajit and his col-
leagues (Dev Sarma & Kumar Das, 2020)   tried to map i-vector embeddings to an 
emotionally invariant space. They obtained a slight performance increase in speaker 
identification using the IEMOCAP dataset compared to models trained only on neutral 
samples. Parthasarathy and his colleagues (Parthasarathy et al., 2017) also used i-vector 
features to test speaker verification with expressive speech. The results show that 
speaker verification errors increase when the values of the emotional attributes increase, 
but the overall results are reliable. Pappagari and his colleagues (Pappagari et al., 2020) 
applied a more novel, deep learning-based embedding method, the x-vector for speaker 
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verification with an emotional speech. They observed that speaker verification perfor-
mance is prone to changes in testing speaker emotions. They found that trials with angry 
utterances performed worst in all three datasets. 

The present study aims to extend the speaker verification topic by applying two 
speaker embedding models based on deep learning in a forensic voice comparison sce-
nario. We investigate how the ECAPA-TDNN embeddings perform with emotional 
speech and how they relate to the x-vector embeddings. The evaluation of the workflow 
model was investigated in the likelihood-ratio framework. And the performance of the 
models was evaluated by equal error rate (EER) of speaker verification, log-likelihood-
ratio cost (Cllr) and Cllrmin (Sztahó & Fejes, 2022). Samples were compared in multiple 
emotion combination cases. 

The rest of this paper is organized as the following: section 2 illustrates the related 
work of emotional speech verification and deep learning embedding in speaker recog-
nition. The proposed model and the methodology are described in section 3. Section 4 
included the result and analysis. Finally, section 5 shows the conclusion and future 
scope.  

2   Materials and Methods 

The workflow of speaker verification based on speaker embedding vectors (x-vector 
and ECAPA) has been evaluated on a Hungarian dataset containing emotional and neu-
tral speech. Figure 1 illustrates the layout of the applied process. Two methods have 
extracted speaker embeddings from the audio samples: x-vector and ECAPA-TDNN. 
Feature extraction was implemented in the SpeechBrain toolkit (Ravanelli et al., 2021), 
and the pre-trained models were downloaded from Huggingface1,2. After extracting fea-
tures from speech samples, cosine similarity was calculated between feature vector 
pairs. The likelihood-ratio scores were obtained by feeding the cosine similarity scores 
to a logistic regression model trained on the ForVoice120+ dataset (Sztahó & Fejes, 
2022). 
 

 
1 x-vector: https://huggingface.co/speechbrain/spkrec-xvect-voxceleb 
2 ECAPA-TDNN: https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb 
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Fig. 1. Speaker verification process applied in the study 

2.1   Dataset  

The Hungarian Emotional Speech Database has been used in this work to evaluate the 
proposed models. This dataset consists of 38 volunteers (20 females and 18 males). The 
voices have been recorded in a quiet office room, and the recording equipment was a 
Sound Blaster NX 2 USB external sound card with a Monacor ECM-100 microphone. 
The recordings were PCM encoded with 16-bit quantization and 16 kHz sample rates. 
Three different sentences were recorded with each speaker in Hungarian with eight 
other emotions: sadness, anger, fear, excitement, disgust, surprise, joy and neutral. The 
linguistic content of the sentences are:  

(1) "Kovács Katival szeretnék beszélni" (English: "I would like to speak with Ko-
vács Kati.") 

(2) "A falatozóban sört, bort, üdítőitalokat és finom malacsültet lehet kapni." 
(English: "In the snack bar you can get beer, wine, beverages and delicious 
pork steak.") 

(3) "A jövő hétvégén megyek el." (English: "I will leave next weekend.")    

2.2   Speaker embedding models 

Two pre-trained models have been used in this work for embedding feature extraction: 
x-vector and ECAPA-TDNN. 

 2.2.1   The x-vector 
The deep learning-based feature extraction method, x-vector was developed primarily 
for speaker verification (Egas-López et al., 2022; Snyder et al., 2018). It is based on a 
multiple-layered DNN architecture (with fully connected layers) with different tem-
poral contexts at each layer (which they call ‘frames’). Due to the wider temporal con-
text, the architecture is called time-delay NN (TDNN). The TDNN embedding archi-
tecture can be seen in Figure 2 and Table 1. 
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The first five layers operate on speech frames, with a slight temporal context centred 
at the current frame t. For example, the frame indexed as 3 sees a total of 15 frames, 
due to the temporal context of the earlier layers. After training with speaker ids as target 
vectors, the output of layer segment6 (‘x-vector’) is used as input to a classifier. 

 
Fig. 2. The x-vector DNN embedding architecture in (Snyder et al., 2018). The two parts: frame 
level (with the 5 frame layers) and segment level (with segment6, segment7 and softmax). 

Table 1. The x-vector embedding DNN architecture (Snyder et al., 2018) 

Layer Layer context Total context Input x output 
Frame 1 {t-2,t+2} 5 120 x 512 
Frame 2 {t-2,t,t+2} 9 1536  x 512 
Frame 3 {t-3, t,t+3} 15 1536  x 512 
Frame 4 {t} 15 512  x 512 
Frame 5 {t} 15 512 x 1500 

Stats 
pooling 

[0,T) T 1500 T  x 
3000 

Segment 6 {0} T 3000 x 512 
Segment 7 {0} T 512  x 512 

softmax {0} T 512  x N 

2.2.2   ECAPA-TDNN 
The ECAPA-TDNN model is the extension of the x-vector model architecture in three 
ways (Desplanques et al., 2020): channel- and context-dependent statistics pooling, 1-
Dimensional Squeeze-Excitation Res2Blocks (1D SE-Res2Block) and multi-layer fea-
ture aggregation and summation. The channel- and context-dependent statistics pooling 
enables the network to focus more on speaker characteristics that do not activate on 
identical or similar time instances, e.g. speaker-specific properties of vowels versus 

XIX. Magyar Számítógépes Nyelvészeti Konferencia Szeged, 2023. január 26–27.

163



speaker-specific properties of consonants. Using the SE-Res2Block (taken from the 
field of computer vision), the limited frame context of the x-vector (15) is extended to 
the global properties of the recording. The multi-layer feature aggregation means that 
not only the activation of the selected deep layer is used as a feature map (as in x-
vector), but the shallower layers (here:SE-Res2Blocks) are also concatenated, because 
they also hold information about the speaker identity.The architecture is shown in Fig-
ure 3. 

 

Fig. 3. The ECAPA-TDNN layer architecture and its SE-Res2Block (Desplanques et al., 2020) 

2.3   Cosine similarity 

Cosine similarity has been used to measure the similarity of pairs of embedded feature 
vectors. It is a measure by the cosine of the angle between two vectors calculated using 
Eq. 1 (Han et al., 2012). Figure 4 illustrates the cosine similarity mechanism between 
two vectors.  

Cosine similarty(𝐴, 𝐵) =
∑  

∑ ∑
                                            (1) 
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Fig. 4. Cosine similarity between pair of vectors (Han et al., 2012) 

2.4   LR score calculation 

Logistic regression has been used (implemented based on the python sklearn package) 
to calculate LR scores. All possible sample pairings (trials) were constructed with the 
target/non-target indicator (same speaker or different speaker). Each trial contains a 
speaker pair, the suspect and the offender and the indication if the speakers are the same 
or not. The probability of the same speaker decision was computed based on the logistic 
regression model using Eq. 2, where E is the evidence, Hso is the hypothesis of same-
origin speakers and Hdo is the hypothesis of different-origin speakers. The probability 
of different speaker origins can be calculated using Eq. 3. The applied logistic regres-
sion models (two separate models for x-vector and ECAPA-TDNN) were trained on 
the ForVoice120+ dataset using 2-10 second long speech samples (Sztahó & Fejes, 
2022). Figure 5 illustrates an example of a trained logistic regression model. The dis-
tribution of the same and different origin vector pairs is shown in blue and yellow, 
respectively. 

                                                       𝐿𝑅 =
( | )

( | )
                                                   (2) 

 
                              𝑃(𝐸|𝐻 ) = 1 − 𝑃(𝐸|𝐻 )                                         (3) 
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Fig. 5. Trained Logistic Regression model example. Blue and yellow lines show the distribu-
tions of cosine distances of embedding vector pairs of the same and different speaker origins, 

respectively. (Sztahó & Fejes, 2022) 

2.5   Evaluation metric 

The output of the two pre-trained models has been evaluated by using an Equal Error 
Rate (EER) and log-likelihood ratio cost (Eq. 4) between each sample pair. In speaker 
verification, the EER’s level is where the false acceptance and rejection rates are equal. 

𝐶𝑙𝑙𝑟 = ∑ 1 + +   ∑ 1 + 𝐿𝑅                       (4) 

where Nso and Ndo are the number of same-origin and different-origin comparisons, 
LRso and LRdo are the likelihood ratios derived from same-origin and different-origin 
comparisons. 

Cllr is a function used to measure the balance of LR scores of same and different 
origin comparisons (Brümmer & du Preez, 2006). Ideal same-origin and different-
origin comparisons have logLR>0 and logLR<0, respectively. Besides Cllr, the mini-
mum Cllr value is also reported, which is the generalization of the original cost function 
and produces application-independent Cllr values.  

Tippet plots, commonly used as a visualization in speaker verification, are used to 
display the proportion of correctly identified same and different speaker origin pairs. 

3   Results 

In this section, we evaluate the effectiveness of the forensic voice comparison and 
speaker verification system if emotional speech is present and how it affects perfor-
mance. We investigated the models in multiple scenarios, considering how the emotions 
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are paired for the known and unknown speakers. Table 2 shows the results if the same 
or different emotions are used in the trials compared to the case when all samples are 
used together. The first row of the table can be considered as a baseline because all 
samples were used without any filtering. Higher performance was found using the same 
emotion (0.026 and 0.046 EER for ECAPA-TDNN with the same and different emo-
tions, respectively). Both models are affected by emotional content. ECAPA-TDNN 
outperforms the x-vector, as was expected. Tippet plots for the two scenarios for 
ECAPA-TDNN are shown in Figure 6. 

 

Fig. 6. Tippet plots for trials with same (left) and different (right) emotions for ECAPA-TDNN 
embeddings. 

Table 2. Performance metrics of x-vector and ECAPA-TDNN when same and different emoti-
ons are used in the trials 

Scenario 
x-vector ECAPA-TDNN 

Cllr Cllrmin 
 
EER% 

Cllr Cllrmin 
 
EER% 

All samples 0.634 0.373 10.9 0.274 0.161 4.5 
Same emotions 0.387 0.270 7.7 0.122 0.092 2.6 

Different emotions 0.658 0.377 11.1 0.288 0.163 4.6 

Table 3. Performance metrics of x-vector and ECAPA-TDNN when neutral samples were used 
for the suspect (first sample of the trials). 

Emotion in of-
fender samples 

x-vector ECAPA-TDNN 
Cllr Cllrmin EER% Cllr Cllrmin EER% 

Neutral 0.402 0.263 7.8 0.117 0.080 2.7 
All emotions 0.707 0.396 11.6 0.291 0.164 4.7 

Anger 1.233 0.447 15.1 0.500 0.201 5.2 
Sadness 0.536 0.324 10.8 0.149 0.083 3.1 

Joy 0.632 0.355 11.5 0.314 0.159 4.6 
Fear 0.703 0.362 10.8 0.369 0.174 5.4 

Excitement 0.851 0.399 12.8 0.330 0.134 4.8 
Disgust 0.713 0.333 12.9 0.311 0.120 4.3 
Surprise 0.650 0.369 11.8 0.286 0.148 4.7 
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Table 3 shows the results when neutral samples were used as the first sample in the 
trials. These cases describe how a given emotion (and all emotions at once) affect the 
ASV performance if only neutral samples are recorded from the suspect. The results 
show that the ECAPA-TDNN outperformed the x-vector in this case also. The first row 
can be considered as a baseline because all samples were used without emotional con-
tent. Higher performance was achieved in the case of neutral vs. neutral as was ex-
pected. EERs were 2.7% and 7.8 % for ECAPA-TDNN and x-vector, respectively. In 
the case when emotional sentences were used as the second part of the trials, the EERs 
were slightly worse in each case. 

Table 4. Performance metrics of x-vector and ECAPA-TDNN when all emotions samples were 
used for the suspect (first sample of the trials). 

Emotion in of-
fender samples 

x-vector ECAPA-TDNN 
Cllr Cllrmin EER% Cllr Cllrmin EER% 

Anger 0.735 0.383 11.7 9.887 0.780 4.5 
Sadness 0.527 0.345 9.9 9.831 0.698 3.3 

Joy 0.645 0.352 10.7 9.939 0.834 4.9 
Fear 0.633 0.379 11.3 9.883 0.739 5.4 

Excitement 0.669 0.361 10.6 9.847 0.805 5.1 
Disgust 0.596 0.346 10.4 9.943 0.796 3.6 
Surprise 0.563 0.340 10.4 9.877 0.764 4.4 

Table 4 shows the results when all emotional samples were used as the first sample 
in the trials. These cases describe how a given emotion and all emotions affect the ASV 
performance if all emotions samples are recorded from the suspect. The results show 
that the ECAPA-TDNN outperformed the x-vector in this case also. Higher perfor-
mance was achieved in the case of sadness vs. all emotions for both models. EERs were 
3.3% and 9.9 % for ECAPA-TDNN and x-vector, respectively.  

4   Discussion and Conclusion 

Based on the metrics obtained, we can conclude that the emotional content affects the 
pre-trained speaker embedding models’ performance. Both ECAPA-TDNN and x-vec-
tor performed worse when the trials were composed of different emotional samples. A 
2% decrease was found if different emotions were present compared to the case when 
the same emotions were applied. Considering the same emotional samples in the trials, 
the separate emotion did not have a large effect compared to the case when only neutral 
samples were used (2.6% and 2.7% EER for all emotions and neutral, respectively). 
Inspecting the separate emotions when the first sample in the trial was always neutral, 
the best results were obtained in the case of comparing them to neutral sentences (7.8% 
and 2.7% EER for x-vector and ECAPA-TDNN, respectively). As was expected, com-
paring neutral samples to emotional samples, worse performances were achieved. Table 
3 shows that only sadness is close to the neutral case. There is no emotion that can be 
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said to have the highest effect on speaker verification. All emotions deteriorate the met-
rics. This implies that if the emotional content on the recording is not neutral, but is the 
same in the trial, the performance deterioration is not present. 

In this work, the effects of emotions were investigated in a forensic voice comparison 
setting using deep speaker embeddings and a Hungarian dataset. The main goal of this 
study was to evaluate whether emotional characteristics affect ASV performance. Two 
pre-trained deep learning models have been used for feature extraction (x-vector and 
ECAPA-TDNN). The similarity of the embedding vectors was measured by cosine sim-
ilarity. The performances were evaluated in the likelihood-ratio framework by calcu-
lating the LR and logLR based on the cosine similarities. It can be stated that for a 
public service expert, emotional content can be a significant factor during speaker ver-
ification. In future work, more emotion-robust models can be built, trained or fine-tuned 
to make ASV more reliable in such cases. 
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