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Abstract: In this study, cross-lingual binary classification and severity estimation of dys-
phonic speech have been carried out. Hand-crafted acoustic feature extraction is replaced 
by the speaker embedding techniques used in the speaker verification. Two state of art 
deep learning methods for speaker verification have been used: the X-vector and 
ECAPA-TDNN. Embeddings are extracted from speech samples in Hungarian and Dutch 
languages and used to train Support Vector Machine (SVM) and Support Vector Regres-
sor (SVR) for binary classification and severity estimation, in a cross-language manner. 
Our results were competitive with manual feature engineering, when the models were 
trained on Hungarian samples and evaluated on Dutch samples in the binary classification 
of dysphonic speech and outperformed in estimating the severity level of dysphonic 
speech. Moreover, our model achieved 0.769 and 0.771 in Spearman and Pearson corre-
lations. Also, our results in both classification and regression were superior compared to 
manual feature extraction technique when models were trained on Dutch samples and 
evaluated on Hungarian samples with only a limited number of samples are available for 
training. An accuracy of 86.8% was reached with features extracted from embedding 
methods, while the maximum accuracy using hand-crafted acoustic features was 66.8%. 
Overall results show that Emphasized Channel Attention, Propagation and Aggregation 
in Time Delay Neural Network (ECAPA-TDNN) performs better than the former X-vec-
tor in both tasks. 

Keywords: dysphonic, cross-lingual, speaker verification, embedding, X-vector, 
ECAPA-TDNN 

1   Introduction 

Biomarkers are implications that indicate a medical condition observed in the patient. 
They contain a wide range of medical marks that can be accurately measured. They 
refer to any sign or indication which may lead to predicting a disease, starting from a 
basic blood test, and going to more complicated tests performed in a specialized labor-
atory (Strimbu & Tavel, 2010). 

Even though the human voice is the main source for communication and social in-
teractions among individuals, it also carries further information about the identity and 
health status of a person (Grossmann et al., 2013). Speech is considered as a biomarker 
due to its ability to make health specialists diagnose diseases based on a patient’s 
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speech. Many diseases affect the speech-production organs in the human body, making 
them face difficulties in producing normal speech (Lin et al., 2020). Dysphonia, also 
called hoarseness, is a condition in which the produced voice has alterations in the qual-
ity, pitch and loudness. It affects specific groups of people, mostly elderly ones, teach-
ers and individuals with extensive use of vocal voices. Nearly one out of three people 
at some time in their life will be diagnosed as having dysphonia (Schwartz et al., 2009; 
Stemple et al., 2018; Van Houtte et al., 2011). A person diagnosed with dysphonia 
requires regular consultations with clinicians to assess the severity of their condition. 
The implementation of these measures is expected to result in significant costs for both 
work environments and healthcare systems due to the disruption caused by the illness 
and the need for medical care for affected individuals. (Cohen et al., 2012; Schwartz et 
al., 2009). 

Therefore, using artificial intelligence to analyse human speech to detect disorders 
has been extensively researched by academia and clinicians. Voice samples from both 
healthy and disordered persons were converted to feature vector representations using 
a digital signal processing technique (Hegde et al., 2019). 

Various research has been conducted using extracted features from speech samples 
to train various machine learning algorithms such as Support Vector Machine (SVM), 
K-Nearest Neighbour (KNN), Random Forest, Decision Tree and many others to dis-
tinguish between healthy and dysphonic speech (Hadjaidji et al., 2021; Syed et al., 
2021; Wu et al., 2017).  

The vast development of deep learning techniques during the last few decades led to 
advancement in many research areas including computer vision, natural language pro-
cessing and speech and speaker recognition. Speaker embedding methods originally 
used for speaker verification and identification can capture speaker-related characteris-
tics which are used to identify speakers based on their speech signals (Bimbot et al., 
2004; Togneri & Pullella, 2011).  

Some researchers adopted speaker embedding techniques for classifying disordered 
speech from a normal one. The objective of these methods is that they don’t require 
hand-crafted feature extraction and engineering (Egas-López et al., 2022; Scheuerer et 
al., 2021). 

In this research, we adapted two state of art speaker embedding techniques, the X-
vector and Emphasized Channel Attention, Propagation and Aggregation in Time De-
lay Neural Network (ECAPA-TDNN) to extract features from speech samples in dif-
ferent languages and use them for classifying dysphonia. SVM and SVR algorithms are 
trained on features extracted from samples from a Hungarian dataset and tested on fea-
tures extracted from a Dutch dataset and vice versa. The result shows that the embed-
ding techniques are suitable for cross-language detection of dysphonic speech. 

In section 2, we will present related works using feature engineering and speaker 
embedding techniques. A detailed description of the used dataset and methods will be 
examined in section three. Section 4 will illustrate the obtained results from classifica-
tion and regression. Lastly, the discussion and conclusion will be included in 5 and 6 
sections, respectively. 
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2   Previous related work  

Machine learning models have shown great advancements in many medical areas such 
as cancer and tumour detection. Analysing speech to diagnose disease has been an ac-
tive research area; there have been enormous machine learning approaches to classify 
dysphonic speech from a healthy control.  
Al-Dhief et al. extract features from Mel-Frequency Cepstral Coefficients (MFCC) in 
speech samples that were found to be effective in pathological voice analysis. Features 
extracted using vowel /a/ from the German dataset Saarbrucken Voice Database (SVD). 
They achieved an accuracy of 85% using Online Sequential Extreme Learning Machine 
(OSELM) algorithm with 200 hidden units, an improved version of the ELM algorithm 
(AL-Dhief et al., 2020). Their work (Dankovičová et al., 2018) presents results of iden-
tifying dysphonic samples from healthy control speech using Random Forest, SVM and 
K-nearest neighbours classifiers. A total of 1560 features were extracted from the vow-
els /a/, /i/ and /u/, 520 features for each vowel, and dimensionality reduction of features 
was performed using Principal Component Analysis (PCA). The highest achieved ac-
curacy was by Support Vector Machine (SVM) classifier on the male samples, and the 
obtained accuracy was 91%. In another study (Awan & Roy, 2006), predicting the se-
verity of dysphonic speech was researched in which, time and spectral-based features 
derived from sustained vowels were considered with stepwise multiple regression. The 
reported results were 0.880 and 0.775 for mean R and mean R2, respectively. The study 
shows that the four-variable model included time and spectral-based acoustic measures 
were able to strongly predict perceived severity. 

Several studies have been conducted by adopting deep learning methods for speaker 
embedding for identifying disordered speech. These approaches do not require hand-
crafted feature extraction, as they are able to include speaker characteristic features in 
the embedding. In (Scheuerer et al., 2021) implementation of two models of X-vectors 
based on Mel-frequency cepstral coefficient (MFCC) and gammatone frequency 
cepstral coefficients (GFCC) carried out for both regression and binary classification 
on SVD dataset. According to their findings, the GFCC-based multi-layer perceptron 
was the best, reaching 0.8810 and 0.8810 ROG AUC scores for both regression and 
classification, respectively. Pre-trained i-vector and X-vector are used for classifying 
Parkinson’s disease and obstructive sleep apnnea, and they perform better than hand-
crafted feature extractions. Moreover, X-vector performs better when there is a domain 
mismatch between the train and test speech samples (Botelho et al., 2020).  

Relating to cross-lingual voice disorder detection, some research has been carried 
out. Cross-lingual detection of voice disorders was implemented using speech samples 
from Spanish, Czech and Dutch. Different kinds of training and testing cases were per-
formed using these languages. According to their experiments, the highest accuracies 
achieved in the test set were nearly 70%, and 60% on Czech and German samples, 
respectively, when the algorithm was trained on Spanish samples. They also examined 
the improvement of accuracies by moving speech samples from the target database to 
the training set. They reported nearly 30% improvement in German samples by adding 
only 20% of German samples to the training set (Orozco-Arroyave et al., 2016). 

In (Shinohara et al., 2017), monolingual evaluation of the pitch-related features has 
been performed in German, Spanish and Czech languages using normal speech utter-
ances to identify voice disorders. 
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    Results achieved in this study are compared to previous work that has been done 
by (Sztahó et al., 2022), performing a cross-lingual evaluation of classifying and esti-
mating the severity level of dysphonic speech in Hungarian and Dutch languages using 
hand-crafted acoustic features. The results in that study show training the machine 
learning algorithms on features extracted from Hungarian utterances and testing on 
Dutch samples is possible. The accuracy of 88% in test samples was achieved with 
acoustic features extracted from entire utterances with phoneme level features of \E\. 
Results of severity estimation were 0.72 and 0.79 for Pearson correlation and RMSE, 
respectively. 

3 Methods 

3.1   Description of Databases 

Hungarian and Dutch samples from two dysphonic speech datasets were used for the 
experiment. Speech samples were collected from patients in each language, also healthy 
control speech was included in the dataset. All speakers read a short passage “The North 
Wind and The Sun” in both languages. Patients in the Hungarian samples were all na-
tive speakers, the recordings were done at the Head and Neck surgery department at 
National Institute of Oncology, and all patients agreed to record their voices for the 
experiments. A total of 179 recordings were used for the Hungarian patients diagnosed 
with dysphonia (81 females and 98 males). Alongside these numbers, also 179 healthy 
control speech samples were included in the Hungarian dataset. The severity level of 
the dysphonic patients is determined by RBH scale which stands for Roughness, 
Breathiness and Hoarseness (Schönweiler et al., 2000) with a number between 0 to 3, 
with 0 specified for the healthy control samples. For Hungarian samples, H is selected 
as the severity level ranges from 0 to 3, 0 indicates no hoarseness (healthy speaker). 

For the Dutch dataset, 30 samples from dysphonic patients have been recorded read-
ing the same “The North Wind and The Sun” passage in Dutch. The recordings were 
organized at the university hospital of KU Leuven, Belgium. Severities were measured 
by GRBAS (Grade – overall judgement of hoarseness, Roughness, Breathiness, Asthe-
nia, and Strain), with values ranging from 0 which indicates no hoarseness to 3 means 
severe dysphonia (Wood et al., 2014). 30 samples from normal-speaking persons were 
included in the database with the same age distribution as dysphonic samples. Distri-
bution of the severity is shown in Table 1. 

 
Table 1. Severity distribution of samples in datasets 

Datasets \ Severity level 0 1 2 3 

Hungarian 179 58 63 58 

Dutch 30 10 17 3 
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3.2 Embedding techniques 

In this study, two state of the art speaker embedding models have been adopted for the 
task of binary classification of dysphonic speech and estimating severity level. The X-
vector model, which is based on deep neural network architecture, primarily used for 
speaker verification, has been used for extracting the embedding of the speech samples 
(Snyder et al., 2018). The architecture is based on the work in (Snyder et al., 2017) with 
adding data augmentation techniques. The first five hidden layers operate at the frame 
level using a time-delay neural network. For each time frame t small temporal context 
before and after is added in the first three layers. The remaining two layers also work 
at the segment level but without temporal context, in total frame-level part of the model 
has a temporal context of 16 frames. The mean and standard deviation of the output of 
the last layer in the frame level is calculated by the statistic pooling layer. The output 
of the statistics pooling layer will be used as an input for two hidden layers of size 512 
and 300 dimensions. The embedding of 512 dimensions can be extracted for both dys-
phonic and normal speech from the layer after statistics pooling. 

ECAPA-TDNN is based on the X-vector model, extending it mainly in three parts: 
channel and context dependent statistics pooling, which extends temporal attention to 
channel attention (Desplanques et al., 2020). This enables the network to focus more 
on speaker properties and not activate on identical or similar time instances. 1-Dimen-
sion Squeeze and Excitation proposed for scaling the frame level features that were 
limited to 15 frames in the original X-vector to give global properties of the recording. 
Squeeze and Excitation has been used for computer vision task for modelling global 
channel interdependencies, also residual block has been used for concatenating 1-Di-
mentaionl SE to the X-vector model for the sake of keeping the number of parameters 
relatively near to the original X-vector.  

We have downloaded the two pre-trained models using Hugging Face repository12 
and SpeechBrain pretrained class. SpeechBrain is an open-source toolkit based on 
PyTorch. It supports many speech processing tasks such as speech recognition, speaker 
verification, source separation and many others. The two pretrained models can be ac-
cessed and downloaded in the mentioned repository (Ravanelli et al, 2021). 

3.3 Classification and regression 

Binary classification of dysphonic vs healthy samples has been carried out using SVM 
(Support Vector Machine) (Cortes et al., 1995) with both linear and rbf kernels. It 
shows good performance compared to other algorithms such as Decision Tree and K-
nearest neighbour with good generalization ability (Dankovičová et al., 2018). Due to 
the size of datasets and nature of Deep Neural Network (DNN) which requires consid-
erably larger datasets to be able to make a good generalization, using DNN might not 
be a good for the problem. Classification is done in a cross-lingual approach; first, mod-
els were trained on Hungarian samples and tested on Dutch samples, the other direction 

 
1 https://huggingface.co/speechbrain/spkrec-xvect-voxceleb 
 
2 https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb 
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was also performed. For both scenarios, hyperparameter tuning was performed for pa-
rameters cost and gamma using grid search method with 10-fold cross-validation on the 
training language. Also, to provide a more accurate assessment of performance, the 
results of this study were obtained through the implementation of 10-fold cross-valida-
tion. This approach allows for a more realistic evaluation of the model's ability to gen-
eralize, particularly when the number of training samples is limited. 

Estimating the severity level of dysphonic patients has been carried out using Sup-
port Vector Regressor (SVR) in both cross-language directions, linear and rbf kernel 
have been used in the experiments. Also, using the same techniques as in classification 
phase hyperparameter tuning of both cost and gamma has been performed with 10-fold 
cross-validation for the training language. 

For both classification and severity estimation output features from X-vector and 
ECAPA were normalized using L2 norm. 

3.4 Evaluation metrics 

For evaluating binary classification model, we use accuracy, sensitivity, specificity, and 
F1-score in addition to area under the curve (AUC). Performance of severity estimation 
of dysphonic patients has been conducted using Root Mean Square Error (RMSE), 
Pearson correlation and Spearman correlation indicating the linear relationship between 
actual and predicted severity scores. 

4 Results 

Binary classification and severity level estimation have been carried out using X-vector 
and ECAPA-TDNN embeddings extracted as features from speech for both Hungarian 
and Dutch datasets. The experiments were carried out in cross-lingual nature, where 
algorithms were trained with speech features from one language and tested using fea-
tures from the other language. 
 
4.1 Binary classification 
 
Results from binary classification of dysphonic and normal speech are shown in Tables 
2 and 3 using embeddings extracted from both models. In the direction where the algo-
rithm trained on Hungarian samples and tested on Dutch utterances. Overall, ECAPA-
TDNN model consistently outperformed the X-vector model, achieving an approxi-
mately 10% improvement in both accuracy and AUC, particularly when using the rbf 
kernel. In X-vector scenario linear kernel performs slightly better than rbf kernel in 
accuracy and AUC. Comparing to the results previously published by (Sztahó et al., 
2022); in Hungarian to Dutch direction, it can be concluded that embedding techniques 
especially ECAPA-DTNN is competitive to the manual feature extraction techniques. 
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Table 2: Binary classifications results from embedding (Train= Hungarian, Test=Dutch).  

             Model Accuracy 
% 

Specificity 
% 

   Sensitivity 
% 

F1-score 
% 

 AUC 
% 

X
-v

ec
to

r 
E

m
be

dd
in

g 

SVM-
Linear 

78.3 74.2 84.0 80.0 79.1 

SVM-
rbf 

75.0 74.1 75.8 75.4 75.0 

E
C

A
P

A
 

E
m

be
dd

in
g SVM-

Linear 
83.3 81.2 85.7 83.8 83.4 

SVM-
rbf 

85.0 92.0 80.0 83.6 86.0 

 
 

In Dutch to Hungarian direction, compared with results from manual feature extrac-
tion in binary classification, results reported in the second part of Table 4. It’s clear that 
both embedding methods perform much better than manual feature extraction despite a 
limited number of speech samples, the best accuracy achieved in manual feature ex-
traction was 66.8% with vowel \E\ included, while our results using embedding meth-
ods achieved 86.8% accuracy in case of using rbf kernel which is 20% increase com-
pared to knowledge-based feature engineering. 
 

Table 3: Binary classifications results using embedding (Train= Dutch, Test= Hungarian).  

         Model Accuracy 
% 

Specificity 
% 

Sensitivity 
% 

F1-score 
% 

AUC 
% 

X
-v

ec
to

r 
E

m
be

dd
in

g SVM-
Linear 

75.13 80.0 71.6 72.9 75.8 

SVM-
rbf 

74.8 79.8 71.2 72.5 75.8 

E
C

A
P

A
 

E
m

be
dd

in
g SVM-

Linear 
82.6 79.3 86.7 83.5 83.0 

SVM-
rbf 

86.8 84.3 89.7 87.3 83.0 
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Table 4: Binary classifications results from manual feature selection, taken from (Sztahó et al., 

2022).  

Features 
Accuracy 

% 
Specificity 

% 
Sensitivity 

% 
F1-score 

% 
AUC 

% 

Train: Hun 
 

Test: Du 

With \E\ 86.2 86.7 85.7 85.7 95.5 

Without 
\E\ 

81.4 80.0 82.8 81.4 91.0 

Train: Du 
 

Test: Hun 

With \E\ 51.6 99.4 2.60 5.00 64.6 

Without 
\E\ 

66.8 61.9 71.8 68.1 74.3 

 

 
4.2 Severity estimation 

 
Similarly, predicting the severity level of dysphonic speech has been performed in a 
multi-lingual fashion. The model was trained using extracted features from Hungarian 
speech, and tested on Dutch samples, the other way round also performed. The perfor-
mance of the model is measured using Spearman correlation, Pearson correlation and 
RMSE. The best results in (Sztahó et al., 2022) by manually extracted features were 
bolded and underlined in Table 5. The last part of Table 5 refers to the results achieved 
in Dutch to Hungarian direction using knowledge-based feature extractions, the perfor-
mance of the model is worse due to the limited number of speech samples in the Dutch 
database, which made the model unable to make a good generalization. 
 

Table 5: Severity approximation results from manual feature selection, taken from (Sztahó et 

al., 2022).  

                     Features Spearman Pearson RMSE 

Train = Hu 
 
Test = Du 

With \E\ 0.740 0.720 0.790 

Without 
\E\ 

0.660 0.650 0.880 

Train = Du 
 

Test= Hun  

With \E\ 0.354 0.382 1.055 

Without 
\E\ 

0.535 0.590 0.960 
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      As can be seen from Table 6, our model using embedding features extracted using 
both speaker verification models outperform hand-crafted feature selection for predict-
ing severity level when we trained the model on Hungarian samples and tested it on 
Dutch speech, which shows better generalization in all three-evaluation metrics. The 
best performance was achieved using ECAPA-TDNN model with rbf kernel. Figure 1 
shows the scatter plots of original and the estimated H scores for the embedding fea-
tures, colours indicate the severity scores. 

Table 6: Severity approximation results from embedding (Train=Hungarian, Test = Dutch) 

         Model Spearman Pearson RMSE 

X
-v

ec
to

r 
E

m
be

dd
in

g SVR-Linear 0.606 0.638 0.823 

SVR-rbf 0.644 0.677 0.760 

E
C

A
P

A
 

E
m

be
dd

in
g SVR-Linear 0.768 0.770 0.674 

SVR-rbf 0.769 0.771 0.650 

Figure 1: Scatter plot of original and the estimated H scores for both cross-language directions. 
 
Our results from Dutch to Hungarian direction of predicting hoarseness levels is re-
ported in Table 7. Compared to the result from handcrafted features included in Table 
5, using features extracted from speaker embedding models performs much better. The 
capability of ECAPA-TDNN can be seen in Table 7 and scatter plot in Figure 1. Left 
side of the scatter plot shows severity prediction from Hungarian to Dutch direction. 
It’s clear from the plot the algorithm made better generalizations compared to the right 
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side of the plot. for estimating the severity level of dysphonic patients in cross-lingual 
approaches that were not possible using hand-crafted acoustic feature extractions be-
cause of the weak performance in predicting severity level.  
 

 Table 7: Severity approximation results from embedding (Train=Dutch, Test = Hungarian) 

         Model Spears Pearson RMSE 

X
-v

ec
to

r 
E

m
be

dd
in

g SVR-Linear 0.716 0.662 0.983 

SVR-rbf 0.667 0.599 0.964 

E
C

A
P

A
 

E
m

be
dd

in
g SVR-Linear 0.746 0.730 0.857 

SVR-rbf 0.783 0.771 0.881 

5 Discussion 

The findings from this experiment indicate that binary classification of normal and dys-
phonic speech in a cross-lingual manner is possible using deep learning embedding 
techniques. For the Hungarian to Dutch direction, it can be noted that our results are 
competitive with manually extracted acoustic features. The best accuracy achieved us-
ing manual feature extraction was 86%, in contrast using speaker embedding we 
achieved 85% accuracy with ECAPA-TDNN.  
     The biggest difference between our model and model based on knowledge-based 
features was in Dutch to Hungarian direction. Because of the limited number of samples 
in Dutch language, training the model with acoustic features and testing on Hungarian 
samples were not reasonably possible. The best accuracy achieved was 66.8%, while 
using features extracted from both embedding models, we were able to achieve 75% 
and 86% accuracy using X-vector and ECAPA-TDNN, respectively. 

Embedding techniques adapted from speaker recognition have shown a good result 
in estimating the severity of dysphonic speech. The two models outperform traditional 
hand-crafted acoustic features in a cross-language setup (Hungarian to Dutch and Dutch 
to Hungarian). The severity estimation was performed using Support Vector Regressor 
(SVR) with both linear and rbf kernels. Nearly 15% difference can be observed in 
RMSE metrics in Hungarian to Dutch direction (knowledge-based achieved 0.79 while 
our model achieved 0.65 with ECAPA-TDNN embedding). The highest Pearson corre-
lation achieved was 0.771 in both directions of the model using rbf kernel. Embedding 
methods achieved 0.796 and 0.783 in Spearman correlation for both Hungarian to 
Dutch and Dutch to Hungarian direction, respectively. Which is superior compared to 
manual feature extraction. Due to the size of datasets and nature of Deep Neural Net-
work (DNN) which requires considerably larger dataset to be able to make a good gen-
eralization, using DNN might not be a desirable choice for the problem. 
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The overall observation of this study is that using two state of art speaker embedding 
extraction methods can be a good replacement for classical hand-crafted acoustic fea-
ture extractions for binary classification as well as predicting the severity level of dys-
phonic speech in a cross-lingual way. The results show that cross-lingual dysphonic 
speech detection might be possible using deep learning embedding adapted from 
speaker verification. The models can extract language-independent features from both 
datasets, and they can be used for the above-mentioned tasks. The main advantage of 
these embedding models is that they are fast; since they have been trained before, much 
computation is not required. Another benefit, they don’t require hand-crafted feature 
selection and engineering which is a very problematic and time-consuming task. 

Another observation of this study is that ECAPA-TDNN shows better performance 
compared to the former X-vector in both binary classification and severity level esti-
mation. This is expected because it is an extension of the X-vector, which is the result 
of the improvements done in former model in three different ways mentioned in section 
3.2. 

6 Conclusion 

In this paper binary classification and severity level estimation of dysphonic speech 
have been performed in a cross-lingual fashion adapting different speaker verification 
speaker embedding methods. Two state-of-the-art pre-trained embedding models have 
been used, which were trained using out-of-domain speech. The embeddings of speech 
samples in both datasets were extracted using X-vector and ECAPA-TDNN and are 
used with SVM and SVR for classification and regression. The results proved that these 
pre-trained deep learning models can be used as a replacement for acoustic feature ex-
traction methods. Models trained on embedding features that are results of pre-trained 
speaker verification model achieved 85% and 86.6% in binary classification in Hun-
garian to Dutch, and Dutch to Hungarian, respectively. Compared to manual feature 
extraction, we can see that our results are competitive in Hungarian to Dutch direction 
and outperformed in Dutch to Hungarian. This is an indication that we can use these 
embedding techniques with a small number of samples and still get a good result. Re-
sults were superior compared to ones we got from hard-crafted feature engineering. 
Moreover, the embeddings show a good result in estimating the severity level of dys-
phonic speech, which leads us to the conclusion that cross-lingual detection is possible 
with acceptable results. 
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