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Abstract. Lemmatization is still not a trivial task for morphologically
rich languages. Previous studies showed that hybrid architectures usually
work better for these languages and can yield great results. This paper
presents a hybrid lemmatizer utilizing both a neural model, dictionaries
and hand-crafted rules. We introduce a hybrid architecture along with
empirical results on a widely used Hungarian dataset. The presented
methods are published as three HuSpaCy models.

1 Introduction

Lemmatization is the process where the lemma - the dictionary form of a word -
needs to be computed from an inflected word form. This can happen in various
ways. One approach is that we are deriving the possible lemmata of a token using
a morphological analyzer which relies on hand-crafted morphological rules then
a statistical model is applied to disambiguate using the context. On the other
hand, end-to-end statistical lemmatizers are using a training corpus exclusively
to learn the transformation rules and the context disambiguation in a single
model. Hence, they can track the language evolution and fit domain variations
if a training dataset is available.

Several end-to-end statistical lemmatizers have been proposed (Müller et al.,
2015; Straka, 2018) however, based on our experiments on the Hungarian subset
of Universal Dependencies (Nivre et al., 2017), they were not accurate enough
on their own. Studies (Orosz and Novák, 2013; Boudchiche and Mazroui, 2019)
showed, that for morphologically rich languages hybrid architectures tend to
perform better.

In this paper, we propose the following three-step hybrid architecture:

1. a dictionary-based first step for unambiguous cases, where we just replace
the token with the lemma if the traits are the same,

2. end-to-end statistical lemmatizer for the highest accuracy in ambiguous cases
3. hand-made rules for special cases where the statistical approach did not see

enough examples.
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For end-to-end lemmatization, we investigated two algorithms that learn rules
from training data, the Lemmy (Kristiansen, 2019) and the Edit-tree Lemmatizer
(de Kok, 2021). Both of them use neural networks to find the best set of rules
for a given word in a given context. We examined various word embedding and
transformer-based networks to find the best-performing end-to-end lemmatizer
for Hungarian.

Our tool is built on spaCy’s foundation and is both versatile and easy to use
in a multi-language environment. It is conveniently released under a Creative
Commons BY-SA 4.0 license, making it an attractive option for organizations
looking to incorporate natural language processing capabilities into their systems
without any licensing issues.

Our hybrid lemmatizer is available in the open-source HuSpaCy toolkit, in
the medium, large, and transformer models since version 3.4.

2 Related Work

2.1 Lemmatizing in spaCy

spaCy (Honnibal, 2015) is an industrial-strength natural language processing
pipeline, which already supports lemmatization for nineteen languages. HuS-
paCy (Orosz et al., 2022) is a Python package supporting Hungarian models for
spaCy. Three different models are available for the tool, with two different em-
bedding types. The medium and large model uses static word vectors, while the
transformer model relies on huBERT (Nemeskey, 2020a), a fine-tuned BERT
(Devlin et al., 2018) model for Hungarian. Up until now, HuSpaCy utilized a
simple rule-learning algorithm it used a lemmatizer called Lemmy.

There are three different built-in lemmatizers available in spaCy. The first is
the ruled-based one. It uses hand-crafted rules and part-of-speech tags to make
a lemma from a token. Four official spaCy models use this, English, French,
Spanish, and Macedonian.

The second type is a dictionary-based lemmatizer. It stores the tokens with
their PoS tags, and it loads a lemma for a token during prediction. Only one
official spaCy model uses this, the Catalan one.

The third and newest one is the Edit-tree Lemmatizer, which is an end-to-end
neural lemmatizer. Fourteen official spaCy models are using this, for example,
Greek, Polish, Danish, German, and Finnish.

2.2 Hungarian Lemmatization Approaches

In Hungarian, there are several approaches to lemmatizing texts, for example,
magyarlanc (Zsibrita et al., 2013) and emtsv (Simon et al., 2020; Indig et al.,
2019a,b). Both of them use symbolic methods to make lemma candidates and
disambiguate between them based on the context of the word in another step.

XIX. Magyar Számítógépes Nyelvészeti Konferencia Szeged, 2023. január 26–27.

320



The morphological parser in magyarlanc generates lemma candidates based
on KR (Trón et al., 2006) grammatical rules and then uses the PurePOS part-
of-speech tagger (Orosz and Novák, 2013) to select the correct one according to
the sentence context.

emtsv is the result of a collective effort to integrate multiple existing NLP
tasks into one application. For lemmatization, it uses the emMorph (Novák et al.,
2016; Novák, 2014) morphological analyzer to create a lemma, part-of-speech tag,
and morphological description candidates, and the emTag (PurePOS) tagger to
disambiguate between them. During prediction, it uses Hungarian rules (Novák,
2015) for HFST (Lindén et al., 2009), then from the pool of lemma candidates, it
selects the most probable one using the PurePOS tagger. We must note that em-
Morph has a very restrictive license, thus it cannot be used freely in a commercial
application.

The lemmatizer of Stanza (Qi et al., 2020) combines a dictionary-based lem-
matizer with a neural Seq2Seq lemmatizer. The dictionary is being used as a
cache to predict lemmata quickly because the Seq2Seq lemmatizer is typically
slower, this is also compiled from the training dataset.

UDPipe (Straka, 2018) handles lemmatization as a sub-task of tagging. The
system generates a rule from tokens and their lemmata based on the longest
common subsequence of two words and then selects them as a classification
task.

3 Methods

Various studies (Orosz et al., 2022; Jongejan and Dalianis, 2009) have already
shown how the different types of lemmatizers perform individually. In some cases
of agglutinating languages, however, the best solution was usually achieved with
a combination of these (Orosz, 2015). In the following section, we present the
methods we have selected for our architecture.

3.1 Lemmy

Lemmy is an end-to-end statistical lemmatizer. It is an open-source Python im-
plementation of the CST algorithm (Jongejan and Dalianis, 2009). This method
automatically learns rules from the training data by detecting prefixes and suf-
fixes to be transformed, so that the resulting token can be used to generate the
lemma. First, it tries to lemmatize based on the existing rules, if this fails, it cre-
ates a new rule using their longest common subsequence and their differences. It
creates a rule based on the token and its lemma’s longest common subsequence,
and stores this and the token’s PoS-tag with the rule occurrence count. It had a
few modifications over the original project to improve its accuracy. During pre-
diction, it uses this frequency information and the predicted PoS-tag to select a
rule, then applies it to the token to compute the lemma.
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3.2 Edit-tree Lemmatizer

The Edit-tree Lemmatizer is another end-to-end statistical lemmatizer that ex-
ploits neural language models. It is a spaCy implementation of the Lemming
lemmatizer (Müller et al., 2015), which learns rules (called edit-trees) from the
training data to transform a word into its lemma.

For example, this system builds an edit-tree for the word leghosszabb (longest)
this way:

1. Search for the longest common subsequence (LCS) between the token and
its lemma: leghosszabb - hosszú (long)

2. Based on this, it splits into 3 parts, prefix - LCS - suffix
3. Finds the necessary transformations for the prefix and suffix to transform

the inflected form into the lemma
(a) In the prefix, we change leg- into an empty string (ϵ)
(b) In the suffix, we change -abb into -ú

leghosszabb εhosszú

( , )3 3

abb → úleg → ε

abbleg
ε ú

Fig. 1: Edit-tree for the word leghosszabb

When predicting, a neural network is used as a classifier to select the right
edit-tree. In spaCy we can use multi-task learning and this can be inserted as a
task, thus being able to access hidden representations in the underlying neural
network. This way, for example, the tagger and the lemmatizer can work together
in an even closer relationship, not just on the few tags that the tagger predicts.

3.3 Hungarian Language Models Used

The architecture of HuSpaCy (Orosz et al., 2022) consisted of a Word2Vec
(Mikolov et al., 2013) static word embedding and CNN layers. The disadvan-
tage of Word2Vec is that it only knows the words it saw during training and
does not use the context information of the tokens.
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To overcome these drawbacks, we experimented with word embeddings con-
taining subword information and context-aware transformer networks.

Static word embeddings containing subword information (e.g. fastText (Bo-
janowski et al., 2017)) learn not just a single word during training, but several
small parts of a word. This way, because a token is a sum of its character n-
gram vectors, it performs better for words outside the vocabulary (OOV), be it
a truly unknown word or a typo. It has the advantage of having a small stor-
age footprint due to the smaller vocabulary size and because of that, it is quite
fast when evaluated on the CPU. In our experiments, we have utilized floret
(Boyd, 2021) which is the spaCy fork of the fastText. We trained two models
on the Hungarian WebCorpus 2.0 (Nemeskey, 2020b), a 100-dimensional and a
300-dimensional one. The advantage of them is that they include character n-
grams, and due to the hashing trick of floret, their storage size is much smaller
than the original word embeddings.

On the other hand, transformer models (e.g. BERT) are able to take the full
sentence context of the word into consideration when predicting, and thus can
give a more accurate representation and achieve a high level of accuracy in
HuSpaCy (Szabó et al., 2023). Their disadvantages are their large storage size
and relatively slow CPU evaluation, but with GPU it can be fast.

3.4 Lookup Lemmatizer

Dictionary-based lemmatizers only perform a simple replacement operation. They
“learn” to map tokens to lemmata from the training dataset by memorizing a
word form with their morphosyntactic information associated with lemmata. If
more than one lemma is associated with the same word with the same mor-
phosyntactic labels, the most frequent one is learned. In prediction time, they
simply return the matching lemmata if any. The disadvantage is that it can only
lemmatize tokens that it has already seen.

3.5 Postprocessing Rules

There may be cases where the lemmatizer makes mistakes and these cases can
be easily corrected by rules. These special hand-crafted rules are most often used
when something has to be cut off the end of a token to get the correct lemma.
You could actually call it the little brother of stemming. Beyond suffix cutting,
these rules are also useful in certain cases for agglutinating languages.

We noticed that in a few rare cases where there are exclamation and question
marks in a token they were left in a lemma, thus we’ve built a rule to remove
them. Also, there were some numbers and dates that needed to be fixed. For
example, for the token 4-6-os the lemmatizers usually made 4-6- as a lemma, but
4-6 would be the correct one. Because the predicted lemmata had unrecognizable
patterns, this rule used the original token to remove any suffixes after a number
or a date.
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4 Results

4.1 Experimental Setup

To ensure comparability, we have used the most commonly available tools for
training and testing. The evaluations were carried out on the test set of the
Hungarian Universal Dependencies (UD) (Nivre et al., 2017) corpus using the
CoNLL 2018 Shared Task (Zeman et al., 2018) evaluator script1.

For training, we used parts of the Szeged Korpusz (Csendes et al., 2004) that
are not included in any part of the UD corpus. As for the comparison, we chose
the most popular open-source tools and used them as they were published for
reproducibility.

4.2 Experiments

Lemmy was used in HuSpaCy, but it only relied on the part-of-speech infor-
mation and did not have any other information about the token. The Edit-tree
Lemmatizer was released in spaCy 3.3. Studies (de Kok, 2021) showed that it
brings significant improvements for various languages, hence we investigated its
usage for Hungarian (cf. Table 1).

Lemmy Edit-tree Lemmatizer

95.53% 95.90%

Table 1. Results of the previous Lemmy lemmatizer and the Edit-tree Lemma-
tizer with the default configurations. We consider this as the baseline.

As we have shown in subsection 3.3, the underlying neural language model
can be simply replaced by another spaCy-compatible module. The Word2Vec
word embeddings previously shipped with HuSpacy models were replaced by a
floret (Boyd, 2021) architecture. This not only improves our results but also
reduces the storage requirements of the whole model.

We experimented with pretrained transformer language models as well. Based
on our experiments (cf. Table 2), huBERT (Nemeskey, 2020a) gave a good accuracy-
to-speed ratio, but with an XLM-Roberta-Large (Conneau et al., 2019) model
we were able to achieve even higher accuracy at the expense of throughput.

floret(100d) floret(300d) huBERT XLM-Roberta

96.56% 96.76% 98.53% 98.89%

Table 2. Results of the Edit-tree Lemmatizer with different language models.
1 https://universaldependencies.org/conll18/conll18_ud_eval.py
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The Edit-tree Lemmatizer has an important hyperparameter, which controls
the number of edit-trees to try before giving up and choosing another one of
the token’s properties as a lemma. It defaults to 1, but increasing this value
improved the accuracy. By adjusting this, the model can access more edit-tree
candidates during prediction because the possible edit-tree is chosen from all
of them. Increasing it to 3 improves the result (cf. Table 3) even though the
pipeline is slower, but it’s a worthy compromise. A higher top_k value makes
the algorithm a bit slower (cf. Table 4) and has almost no effect on the results.
Because of this, we’ve choosen 3 as our top_k value for the next experiments.

floret(100d) floret(300d) huBERT XLM-Roberta

top_k = 1 96.56% 96.76% 98.53% 98.89%
top_k = 3 96.87% 97.01% 98.63% 98.93%
top_k = 8 96.84% 97.09% 98.61% 98.83%

Table 3. Lemma accuracies of the Edit-tree Lemmatizer with increased top_k
parameters.

floret(100d) floret(300d) huBERT XLM-Roberta

top_k = 1 7739 7255 3349 2429
top_k = 3 6740 6873 3166 2358
top_k = 8 6655 6571 3146 2347

Table 4. Throughput (token/s) of the Edit-tree Lemmatizer with increased
top_k parameters.

In Lemmy, it was already noticeable that the casing of some words was wrong,
this problem was also apparent here. So the same rule had to be built into the
system (cf. Table 5). If the word is a proper noun or the first token of a sentence,
it can start with a capital letter, in all other cases, the word is lowercase. We
built this in so that the algorithm can be aware of these casings during training
so that it can apply them later during prediction.

floret(100d) floret(300d) huBERT XLM-Roberta

+ Casing 96.29% 97.23% 98.63% 98.85%

Table 5. Results of the Edit-tree Lemmatizer taking casing into account.

Hybrid Lemmatizer Results Since the Edit-tree Lemmatizer doesn’t give any
prediction sometimes, we tested how a dictionary-based lemmatizer performs as
a supplement. This became the second part of our architecture, but it became a
pipeline step before the Edit-tree Lemmatizer in the whole spaCy pipeline.
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We had two experiments with this setup, the first was about pairing the
training data to the lemmata based on the token and PoS tag (cf. Table 6).
However, this led to many incorrect predictions. Finally, to solve this, we paired
the training data to the lemmata to be trained based on the token, the PoS-tag,
and the morphological tags. During training and prediction, the number-like
tokens are masked, resulting in fewer pairs, but this will match more tokens
containing numbers. It can generalize better with this because for example the
1000-ben will be 0000-ben and it could be applied to 3000-ben which may not
have been included in the training set.

In a couple of cases, even combined – the dictionary-based lemmatizer with
the Edit-tree Lemmatizer – they still made some errors, and we used post-
processing rules to try to correct the lemma in the ways that we mention in
subsection 3.5. Upon implementation of these rules, the accuracies demonstrated
a slight decrease, however, the overall quality of the predicted lemmata showed
noticeable improvement.

floret(100d) floret(300d) huBERT XLM-Roberta

+ Lookup 97.19% 97.48% 98.68% 98.94%
+ Rules 97.17% 97.46% 98.68% 98.94%

Table 6. Results of the hybrid architecture. The rows are an addition to the
existing system. It can be observed that the transformer-based models were not
really helped by the hybrid additions, but the floret-based models were. This is
due to the fact that the larger models are more adept at selecting the edit-trees.

4.3 Final Results

In order to compare our architecture’s results with already existing systems, we
chose three popular systems that have built-in lemmatizers. emtsv is a Hungarian
pipeline of state-of-the-art NLP components, UDPipe is commonly used as a
baseline in CoNLL competitions, and Stanza has relatively high scores on UD
test sets. It is important to point out that all of them were used off-the-shelf,
i.e. not re-trained or fine-tuned.

The evaluation was performed on the Hungarian Universal Dependencies test
set. The UDPipe and Stanza authors have made the results of their systems avail-
able, but the emtsv authors have not, so we used one of the default configurations
to get UD-compatible output and then evaluate it. It is important to point out
that comparing emtsv’s lemmatizer is probably not fair out-of-the-box, because
the tool was trained on a different train-test split, which may conflict with ours.
(There is a high probability that their training set contains sentences in our test
set.)

In Table 7 one can see that all systems are quite accurate except UDPipe.
Our hybrid lemmatizer consistently outperforms other systems, demonstrating
a marked improvement in performance.
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Accuracy

Word2Vec baseline 95.90%

HuSpaCy + floret (100d) 97.17%
HuSpaCy + floret (300d) 97.46%
HuSpaCy + huBERT 98.68%
HuSpaCy + XLM-Roberta 98.94%

emtsv 96.16%
UDPipe 88.50%
Stanza 94.19%

Table 7. Lemmatization accuracies of the different NLP pipelines.

4.4 Resource Usage

It is also important to mention the resource usage of our models. These models
contain a complete language pipeline, i.e. a single model of a system. In the case
of HuSpaCy, these models include tagger, morphologizer, lemmatizer, parser,
and named entity recognition.

Storage Size
Throughput
(tokens/sec)

CPU

Throughput
(tokens/sec)

GPU

Memory
Usage (GiB)

Word2Vec baseline 1.6 GB 854 7059 4.61

HuSpaCy + floret (100d) 125 MB 1862 5903 2.35
HuSpaCy + floret (300d) 455 MB 1186 6074 3.33
HuSpaCy + huBERT 1.8 GB 242 3055 4.84
HuSpaCy + XLM-Roberta 9.1 GB 78 2186 17.87

emtsv 3.6 GB 116 - 3.91
UDPipe 5 MB 3175 - 1.38
Stanza 246 MB 30 395 5.31

Table 8. Resource usages of the different models. The storage sizes contain a
full natural language processing pipeline, not just the lemmatizer. During mea-
surement, we’ve tried to run every benchmark three times, and take the best
result with each tool. For each tool, we’ve tried to use only the parts that are
needed to the lemmatizer, in the case of our models this means that we’ve run
them without named entity recognition. We measured the throughput using an
AMD EPYC 7F72 CPU and NVIDIA A100 (40GB) GPU.

Table 8 shows that the results do not really correlate with the storage re-
quirements of a model. This is mostly due to the language model, as can be
seen in the case of the Word2Vec model, which is 1.6GB but is outperformed
by a 125MB model in accuracy. However, the two models use completely differ-
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ent word embeddings, while Word2Vec uses a continuous bag-of-words model,
floret uses CBOW with subword information but also hashes words so it is a
bit slower.

For both XLM-Roberta-based and huBERT-based, we can see that the 5x stor-
age requirement is almost unnecessary, with the result being only a few tenths
of a percentage point better.

We must note that at emtsv it is the size of a Docker image which is a
recommended way to use the tool, thus it may contain parts that are not part
of the original emtsv pipeline.

5 Conclusions

We presented a hybrid architecture, which consists of three parts utilizing the ad-
vantages of neural language model-based statistical lemmatizers and dictionaries
along with hand-crafted rules. We have shown the application of hand-crafted
rules and morphological information-based dictionaries can improve end-to-end
statistical lemmatizers. We examined different language models and we found the
XLM-Roberta-large model achieves the best results, but the five times smaller
huBERT reached comparable results too. We performed multiple experiments to
extensively compare our tool with other systems. As the results show, our lem-
matizer outperforms other models and the storage requirement is smaller with
the smaller floret model than some of them.

Altogether, this paper has presented a new hybrid lemmatizer architecture
that is freely available in three models of HuSpaCy. We made it open-source,
under a permissive license.
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