COMPOSITE FILM AS ANTICORROSIVE COATING OF TI ALLOYS SURFACES

<u>Juan Hidalgo Viteri</u>¹, Nicoleta Cotolan¹, Galambos Ildiko², Graziella Liana Turdean^{*1}

 ¹Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany János Street, 400028 Cluj-Napoca, Romania,
²Soós Erno Research and Development Center, University of Pannonia, 8200 Nagykanizsa, Hungary
e-mail: juansannin2595@gmail.com; graziella.turdean@ubbcluj.ro

Abstract

Causing important economic damages, the corrosion of the titanium alloys used in the different environmental or medical fields can be prevented by using a physical barrier with anti-corrosion properties. The anti-corrosive property of a film consisting of poly (methyl methacrylate) (PMMA) and ibuprofen (IBU) deposited by dip-coating on Ti alloy surface was investigated by electrochemical impedance spectroscopy method.

Introduction

The main important anticorrosive methods consist of the design of corrosion-resistant materials, the application of a film having anti-corrosion properties, the addition of corrosion inhibitors, and the use of cathodic protection. In this context, an innovative high-protective anti-corrosive strategy consists of using a composite matrix consisting of an inhibitor included in a polymeric film [1].

Experimental

Ti-6Al-4V/xIBU-PMMA (where x = 0.2, 0.4, 1 mM ibuprofen) modified surface was prepared by dip-coating method and was investigated into a 3.5% of NaCl saline solution by electrochemical impedance spectroscopy (EIS) measurements, using a PGStat 302N electrochemical workstation.

Results and discussion

In order to establish the steady-state open circuit potential (OCP) a stabilization period of 60 min was performed. The potentiodynamic polarization measurements were carried out over a potential range of $\pm 200 \text{ mV}$ *versus* OCP with a scan rate of 0.5 mV s⁻¹. From the obtained Tafel plots the estimation of the corrosion kinetic parameters, such as corrosion potential (E_{corr}), corrosion current density (i_{corr}), and anodic (b_a) and cathodic (b_c) Tafel slopes were performed. The EIS measurements lead to calculating the corrosion inhibition efficiency (IE%).

Conclusion

The corrosion inhibition performance of a Ti–6Al–4V/xIBU-PMMA (where x = 0.2, 0.4, 1 mM ibuprofen) interface in a 3.5% of NaCl saline solution was studied proving the inhibitory ability of ibuprofen.

Acknowledgments

Juan Hidalgo Viteri thanks for the Ph.D. fellowship offered by the Romanian Ministry of Foreign Affairs in accordance with Government Decision 477/21.04.2021.

References

[1] E. Maya-Visuet, T. Gao, M. Soucek, H. Castaneda, Prog. Org. Coat. 83 (2015) 36-46.