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SUMMARY

In the field of food science, indirect methods which can be used to determine a certain 
property of the sample by correlating the measured physico-chemical characteristics 
are widely applied for the detection of food counterfeiting. Near infrared spectroscopy 
(NIR), complemented by multivariate statistical analyses, is a quick, non-destructive 
method that does not require sample preparation in most cases. The interactions that 
can be observed between aqueous systems or aqueous solutions and electromag­
netic radiation (light), i.e., the effects of different perturbations on the structural and 
functional properties of water, are investigated by a new and dynamically evolving 
area of science called aquaphotomics. It has been proven by a number of research 
results that by applying the so-called “water-mirror approach”, the detection limits 
that can be obtained using the conventional approach can be overcome in aqueous 
systems, and in certain cases components that are present in concentrations that are 
a few orders of magnitude lower than usual can be detected. The technique of aqua­
photomics has been tested in diverse areas of science such as medicine, microbiol­
ogy, plant physiology or food analysis. In our series of experiments, the detectability 
of the counterfeiting of ground paprika samples using 0 to 40% corn flour has been 
investigated by applying the method of aquaphotomics to their solutions. During the 
evaluation of the results, the first harmonic range of water (1,300-1,600 nm) was used. 
Spectral patterns were represented on an aquagram, and then a model for estimat­
ing the corn flour content was constructed using the Partial Least Squares Regres­
sion (PLSR) method. PLSR results showed a strong correlation between the added 
amount of corn flour and the amount estimated by NIR (near-infrared) spectroscopy. 
Samples with a lower corn flour content (0-3%) showed a greater absorbance around 
1,450 nm, while samples with a higher corn flour content (15-40%) exhibited a greater 
absorbance between 1,364 and 1,412 nm. These differences are explained by the 
spectral absorption of water bound with hydrogen bonds to varying degrees. Re­
search results from recent years show that aquaphotomics is a promising technique 
in many areas of science, including food science.
Introduction to aquaphotomics Goal and brief history of aquaphotomics

Aquaphotomics is a new area of science aimed at Based on her own and other researchers’ earlier 
investigating water as a complex molecular system of results obtained during near-infrared spectroscopic 
many conformations having different functionalities, measurements of aqueous media, the establishment 
based on the interaction of water molecules and light [1]. of a new field of science was proposed by Roumiana
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Tsenkova, a professor at Kobe University in Japan, 
in 2005, investigating specifically water-light 
interactions and organizing the knowledge acquired, 
and she called this field aquaphotomics [2, 3]. 
Water-light interactions are proving to be a huge 
source of information on the structural and functional 
properties of aqueous systems. Water is one of 
the basic building blocks of nature. This discipline 
deals with the comprehensive study of water as the 
“molecular and energy mirror” of aqueous systems.

During the development of aquaphotomics, the 
main goal was to establish a common platform 
and strategy for a better understanding of the 
functionality of water through water-light interaction, 
at all frequencies of the electromagnetic spectrum. 
Most work to date has been performed using near- 
infrared (NIR) spectroscopy, typically in the first 
harmonic range (1,300-1,600 nm) of the O-H valence 
vibration, where many specific absorption band 
characteristic of water have been identified as a 
result of previous work [4-6]. Research in this field 
shows that aquaphotomics can make a significant 
contribution to water research and to a better 
understanding of the molecular system of water [1].

Compared to mid- and far-infrared light, NIR enables 
a deeper penetration, thus providing a more reliable 
yet fast and non-destructive measurement that is 
particularly suited to study even intact biological 
systems [1, 7]. When using NIR spectroscopy in 
analytical practice (for example, in pharmaceutical 
applications), water is one of the main barriers to 
the direct mass determination of the individual 
constituents [8] because it obscures other 
constituents in the absorption spectrum due to its 
significant light absorption, thereby significantly 
changing the spectrum of the sample to be tested 
and causing absorption band shifts. Since water 
exhibits a significant light absorption in the NIR 
range and changes in its quantity can be measured 
easily, moisture determination is one of the main and 
most common applications of NIR spectroscopy. 
It is used, for example, in agriculture, the food 
industry, medicine, the pharmaceutical industry, the 
polymer and textile industries to study water content, 
hydrogen bonds and hydration state [9].

With the development of aquaphotomics, the 
collective material and energy mirror properties of 
water have been described [1]- The so-called “water 
m irror approach” is one of the basic spectrum analysis 
and interpretation methods in aquaphotomics. It 
utilizes the high degree of sensitivity of the hydrogen 
bonds in water, where the structure of the water is 
influenced by all components of the aqueous system 
and the surrounding energies [1]. Each aqueous 
system is a dynamic arrangement of a network of 
water molecules. The strength, number and quality of 
the secondary bonds between the water molecules 
are influenced by the hydration of the component(s) 
in the system and the various perturbations together,

as they affect the entire body of water [10]. Any 
disturbance of the aqueous system causes a change 
in the conformations of the water molecules, resulting 
in changes in the absorption bands characteristic of 
water in the NIR spectrum.

As a result of physical and chemical changes, the 
absorption pattern changes in each case. These 
properties of water allow the indirect measurement of 
small amounts of dissolved substance(s) [11], even if 
the constituent in question does not absorb light in the 
NIR range[12], A common feature in aquaphotomics 
research is that the matrix of the systems studied is 
water. Special data analysis methodology is required 
to extract the information hidden in the complex 
and multivariate spectra of such systems [13]. The 
toolkit of aquaphotomics includes the application 
of multivariate data analysis methods used in NIR 
spectroscopy, which have become more and more 
sophisticated over the years, and at the same time 
extending them.

Through the study of the light-water interaction 
using the methodology of aquaphotomics, the 
knowledge describing the role of water is constantly 
expanding. In quality management systems, it is 
a growing requirement that the methods used in 
different research projects be fast, non-destructive 
and chemical free. The undeniable advantage 
of the method is that it can be used effectively in 
both basic and applied research, enabling non- 
invasive observations. Typically, a holistic approach 
is adopted, as opposed to the measurement of 
individual parameters [13].

With the development of aquaphotomics, a new 
terminology has evolved to describe the subject 
matter of the study as accurately as possible on 
the basis of the newly acquired knowledge. Figure 
1 illustrates the process of the methodology which 
allows for the above detailed issues. Following 
experimental design and precise instrument 
setup, the samples to be tested are exposed to an 
interference. After the experiments are performed 
(and the spectra are recorded), the raw data are 
analyzed, followed by the pretreatment and analysis 
of the spectral data. The water absorption bands 
(WABS) obtained as a result of the analyses are used 
to identify the activated water absorption bands. 
Activated water absorption bands create water 
absorption spectral patterns (WASPs), which can 
be displayed on aquagrams. The database of water 
absorption bands is the aquaphotome.

WAMACS

These are the Water Matrix Absorbance Coordinates. 
They are the spectral ranges where the specific 
absorption bands (WABS) characteristic of water are 
most likely to be found, resulting from the absorptions 
of light by the different molecular conformations of 
water in different energy ranges (water modifications,
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water molecular structures). In the first harmonic 
range of the O-H valence vibration (1,300-1,600 nm), 
12 WAMACS have been identified experimentally [1].

A ctivated water bands

The absorption bands of water are activated to 
varying degrees during different perturbations. 
Based on the activated bands that are repeated 
consistently in aquaphotomics research, the 
individual perturbations can be easily identified and 
characterized. Therefore, the activated absorption 
bands of water are identified during the analyses.

WASP

Water Absorbance Spectral Pattern. The WASP 
is defined by the combination of activated water 
bands caused by the different perturbations, which 
describes the state of the entire water molecular 
system. It provides a large amount of chemical and 
physical information, capturing the structure and 
dynamics of the system as a whole [10]. The WASP 
can be used as a holistic biomarker to explore system 
functionality.

Aquaphotome

The database of water absorption bands and 
patterns in the entire electromagnetic spectrum is 
called the aquaphotome. The aquaphotome is the 
totality of different water molecular structures that 
are formed by aqueous or biological systems under 
different conditions. The complete aquaphotome 
can be defined as a comprehensive database of all 
separate WASPs, interpreting their functionality in 
a given system under given conditions. The large 
database obtained about characteristic water bands 
can be linked to specific biological functions, it allows 
rapid comparisons and identifications, and can be 
further used for biological, chemical and physical 
predictions and diagnoses [1,10].

Aquagrams

The aquagram is a new graphical representation 
of results developed for the concise and clear 
presentation of the water absorption spectral 
pattern [14]. The aquagram shows the normalized 
and averaged absorbance values of different sample 
groups at selected wavelengths [14, 15]. The values 
on the axes defined by the activated water absorption 
bands can be plotted on a radar or linear chart [16].

Aquagrams display a specified number of axes 
and WABS, in a perturbation- and system-specific 
way. In the first harmonic band of the water valence 
vibration, the axes of the aquagram are (generally) 
based on the previously discovered 12 water matrix 
absorption coordinates (WAMACs) [13].

The classic aquagram is relative and depends on

the samples included in the calculation. A more 
advanced version is the standardized aquagram with 
confidence intervals [17]. This extension makes it 
easier to determine whether the differences in water 
absorption spectral patterns (WASP) characteristic 
of the water displayed on the aquagrams are 
statistically significant [13].

Aquaphotomics methodology

Experimental setup

The key element of aquaphotomics studies is the 
recording of high quality spectra, for which precision 
spectrometers (high signal-to-noise ratio, S/N) are 
required with a high spectral resolution (0.5-1 nm)
[18]. In addition to the rules applicable to conventional 
approach NIR analyses, additional specific elements 
should be ensured during the experimental design. 
These include, for example, multiple recording of 
the spectra of the individual samples, analysis of the 
same sample with several successive illuminations, 
and continuous monitoring of the environmental 
parameters such as temperature and humidity. In 
addition, pure water is measured during the test 
according to certain samples numbers; water spectra 
are used to correct for possible unwanted effects in 
the environment or the equipment. Recording of the 
spectra of the experimental samples is carried out 
randomly, using the same cuvette, between regular 
pure water samples, paying close attention to precise 
thermostating of the samples. Precise setting of the 
measurement conditions is necessary, because in 
aquaphotomics research we usually look for such tiny 
spectral differences due to the molecular structure of 
the water, that even the slightest differences due to 
the geometry of the instrument or the experimental 
setup, or temperature fluctuations can interfere with 
the analyses.

In aquaphotomics experiments, various controlled 
perturbations are often used, as these help to reveal 
hidden information. In practice, the most frequently 
used deliberate perturbations are temperature [6], 
successive illuminations and varying degrees of 
dilution [19]. The NIR spectra of aqueous systems are 
very complex, and the changes in their absorbance 
spectra caused by the different perturbations are 
generally very subtle, but nonetheless constant and 
consistent. A given perturbation does not always 
produce the same change in the spectrum. In the 
NIR range, there are four pronounced peaks in the 
water spectrum at about 970,1,190, 1,450 and 1,940 
nm. Depending on the aqueous system tested, some 
regions may be more suitable for the analysis and 
provide more information [1, 19].

S pectral pretreatment methods

The first step in analyzing the recorded spectra is 
the visual inspection of the raw spectral data, which 
can provide information on both clear outliers and
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the necessary spectrum pretreatment methods. 
The primary purpose of pretreatment methods is to 
enhance information relevant to the research and 
to reduce unwanted effects. Many pretreatment 
methods can be used during data analysis. Noise 
reduction methods include, for example, averaging 
and smoothing [20]. The most commonly used 
noise reduction technique in the methodology of 
aquaphotomics is the application of a Savitzky- 
Golay filter (usually with a second order polynomial 
function and an optimized wavelength range) [21]. 
To correct baseline shifts, normalization, Standard 
Normal Variate (SNV) transformation [22, 23] and 
Multi Scattering Correction (MSC) [23] are often 
used. „Detrending” is also a possible method for 
correcting baseline shifts, but it can also be used 
effectively to eliminate slope changes. The difference 
between spectra and spectral derivatives allows for 
a more efficient detection of the absorption peaks, 
which in the aquaphotomics methodology means 
primarily the absorption bands of activated water. 
The two most commonly used methods of derivation 
in the NIR technique are the Norris-Williams [24] and 
the Savitzky-Golay [21] derivation. Derivatives solve 
two basic problems: overlapping peaks and large 
baseline changes. Additive effects are corrected 
by the first derivative, while multiplicative effects 
are also corrected by the second derivative. In 
aquaphotomics research, the second derivatives are 
typically used to explore activated water absorption 
bands [25]. Extended Multi Scattering Correction 
(EMSC) is one of the means by which the distortion 
of the spectrum by a known effect can be reduced 
[26].

C hemometric methods

To evaluate the large amount of information encoded 
by the absorption spectra, chemically driven 
multivariate data analysis, so-called chemometric 
methods are required. In the methodology of 
aquaphotomics, the first qualitative evaluation of 
multivariate spectral analysis is most often carried 
out by principal component analysis, the primary 
purpose of which is to obtain a deeper understanding 
of the main patterns underlying spectral variability.

Principal Component Analysis (PCA) is one of the 
most useful and probably the most widely used 
exploratory techniques in spectroscopy [27]. Its 
purpose is to determine the possible relationships 
between the samples, i.e., it provides primary 
information regarding the major directions and 
variance of the data set. It reduces the initial data 
matrix and compresses the entire matrix into a 
smaller number of background variables representing 
it accurately. In the resulting multidimensional 
space, it defines directions where the variance of the 
results is the greatest. The first principal component 
explains most of the variance [28]. The results can 
be illustrated with scores and loadings graphs. The 
scores graph shows the positions of the measured

spectra of the individual samples in the transformed 
space of the newly constructed variables (principal 
components), allowing us to get to know the major 
patterns of the samples in the spectral space relative 
to one another, while the loadings graph displays 
the importance of the roles of the original variables 
(wavelengths) in shaping the above-mentioned 
patterns. With principal component analysis one can 
identify activated water absorption bands.

Discriminant analysis (DA) is a supervised method 
(grouping of the samples is defined during the 
analysis). The Partial Least Squares Discrimination 
Analysis (PLS-DA) [29] assists in the identification of 
water absorption bands with the greatest differences 
between certain predefined groups. The method 
is based on the PLS regression algorithm, which 
searches for latent variables with the maximum 
covariance of the Y variables [30]. During the 
application of SIMCA (Soft Modeling of Class 
Analogies) [31, 32], unique PCA models are built 
individually in several steps for each predefined 
sample group and the projection of additional 
sample groups is used to analyze the similarity and 
distinctness of the groups. Ultimately, a so-called 
discrimination power vector is yielded by the method, 
showing which wavelengths play the most important 
roles in discriminating, thus providing information 
about activated water absorption bands.

Water absorption bands can be used, among 
other things, to indirectly determine changes in the 
concentrations of the substances present in the water 
[12,13]. The partial least squares regression (PLSR) 
method generalizes and combines the properties of 
principal com ponent analysis and multiple regression. 
Its purpose is to explore the relationship between the 
dependent variable(s) and the independent variables 
[33-35]. From the independent variables, i.e., the 
spectra, it creates latent variables (LV), which are 
linear combinations of the original variables. LVs 
are designed in a way so that they are be able to 
describe the variance of the dependent variable to 
be estimated as much as possible. When using the 
PLSR, the coefficients of the regression equation are 
calculated and the results for the individual variables 
are estimated, which provides information on which 
wavelengths and water-specific absorption bands 
change the most with the change of the dependent 
variable under investigation.

Aquaphotomics is primarily applicable to water-rich 
systems. Water-soluble molecules present in low 
concentrations are hydrated with large numbers of 
water molecules. Hydration around the dissolved 
molecules also indirectly affects the hydrogen bonds 
between water molecules that are not involved in the 
hydration. In this way, water acts as a kind of amplifier. 
Instead of directly measuring the constituent to be 
detected, information regarding its concentration 
is obtained indirectly by measuring changes in the 
solvent molecules [36].
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In two-dimensional correlation spectroscopy, 
external disturbance (such as temperature, 
concentration, etc.) is applied to the system during 
the spectral measurement, allowing for a deeper 
exploration as a function of time or the disturbance. 
It extends the spectral region to another dimension 
and decomposes the overlapping wavelength bands 
into their components [37]. 2D correlation spectra 
(in which the similarities and differences between 
the individual spectral intensities are amplified) 
are derived directly from the dynamic spectra. In 
this way, the tracing of spectral intensity can be 
achieved. The standard deviation (variance) of the 
spectral intensities from the expected value, which is 
collected sequentially in the order of certain physical 
variables (such as time or temperature), is compared 
to two independent wave numbers [38].

The final step in the analysis is the illustration of the 
water absorption spectral patterns on aquagrams.

A pplications of the aquaphotomics method

Near-infrared spectroscopy is a quick and non­
destructive technique with a wide range of 
applications, further expanded by the aquaphotomics 
methodology. Since the development of the 
aquaphotomics discipline, it has evolved into a 
multidisciplinary field of science [39]. In the first 
publications, applications such as the diagnostic 
possibilities of mastitis in dairy cows were interpreted 
and described based on water absorption bands 
[40, 41]. In animal biology research, the method 
was used to detect the reproduction period of giant 
pandas [15] and cows [42].

The method has been used in medical research 
to detect HIV infection [43], to increase dialysis 
efficacy, for early screening of colon cancer, and 
to characterize soft contact lenses [44]. In the 
microbiological applications of the method, the 
rapid identification of various lactic acid bacteria 
strains [45], as well as the possible distinction and 
resistance of probiotic and non-probiotic lactic acid 
bacteria [46, 47] have been investigated. In plant 
biology studies, the diagnosis of soybeans infected 
with mosaic virus has been carried out [48], and the 
extreme dehydration tolerance of the Rose of Jericho 
(Haberlea rhodopensis) was confirmed based on 
water molecular structure [49].

In food industrial applications of aquaphotomics, 
the quality characteristics of milk [40, 41], and 
the ochratoxin A contamination of green coffee 
beans were investigated [50], the shelf life of Italian 
Taleggio cheese was studied [51] and the ripening 
of Bulgarian yellow cheese (Kashkaval) has been 
successfully monitored [52]. In their work, Barzaghi, 
Cremonesi & Cattaneoand identified the bioactive 
ingredients of Italian propolis in intelligent food 
packaging materials. The purpose of the work of 
Vanoli et al. was to study the effect of an innovative,

cellulose polymer based coating on the maturation 
of Salame Piacentino [53, 54].

Water quality research [55] and experiments in 
aqueous solutions have also contributed to the 
widespread recognition of aquaphotomics. Studies 
have been carried out to measure the pesticide 
content of water [56], as well as to detect the presence 
of contaminants in saline solutions [19], among other 
things. The water mirror approach has allowed the 
indirect determination of components present in the 
ppm (1:106), and in some cases even the ppb (1:109) 
range, which was previously not possible using the 
conventional NIRS analytical technique [6, 7, 11]. 
Research has shown that, with this concept, the 
spectral pattern of water can be used as a holistic 
water quality indicator [25].

In our recent research, the detectability of 
counterfeiting of ground paprika with corn flour 
was tested using the aquaphotomics technique. In 
the course of the investigations, ground Hungarian 
sweet paprika was counterfeited with corn flour at 
concentrations between 0 and 40%, in several steps. 
The samples thus prepared were diluted tenfold 
with distilled water, and the solutions were filtered 
after homogenization. Three parallel transflectance 
spectra of the resulting solutions were recorded 
using a MetriNIR (MetriRep Kft., Hungary) instrument 
in the 740-1,700 nm wavelength range. Evaluation of 
the spectra was carried out in the 1,300-1,600 nm 
range. Savitky-Golay smoothing and multiple scatter 
correction (MSC) were applied to the spectra, and 
then a model was constructed using the partial least 
squares regression (PLSR) method to estimate the 
concentration of the added corn flour. To represent 
the WASP, a classic aquagram was created. Data 
were evaluated using the R-project and R-studio 
3.5.2. software.

The results of the PLS regression model showed 
a close correlation (model construction: R2=0.97; 
model validation: R2CV= 0.90) between the estimated 
and actual amounts of added corn flour. During the 
construction of the model, we were able to correctly 
estimate the amount of added corn flour with an 
error of 2.14%, while the error during the validation 
was 4.04%.

The results of the aquagram (Figure 2) showed 
that the samples added with less amount of corn 
flour (1%, 3%) or no corn flour at all had higher 
absorbance values at wavelengths of 1,426 nm, 
1,440 nm, 1,452 nm, 1,462 nm, 1,476 nm and 1,488 
nm, which indicates that there are more hydrogen 
bonded water molecules in the authentic sample 
and the samples containing 1% or 3% corn flour. In 
contrast, samples containing more corn flour had 
higher absorbance values in the 1,364 nm, 1,374 nm, 
1,384 nm, and 1,412 nm. The latter suggests that 
samples containing higher amounts of corn flour 
(15-40%) contain fewer or weaker hydrogen bonded
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water molecules [57]. For the above wavelengths, 
a certain trend can be observed as a function of 
the increasing concentration of added corn flour: a 
decreasing trend between 1,426 and 1,488 nm, and 
an increasing trend between 1,364 and 1,412.

S ummary

The aquaphotomics technique is a new and promising 
method for the rapid and non-destructive exploration 
of the structural and functional properties of aqueous 
systems. In classical NIR spectroscopy, due to its 
significant light absorption, water alters the spectrum 
of the analytical sample, making it one of the most 
common constituents that interfere with direct mass 
determination. Secondary bonds in aqueous systems 
(such as hydrogen bonds) react with high sensitivity 
to any perturbation by changing the conformations 
of the water molecules, resulting in an absorption 
band characteristic in water in the NIR spectrum. 
This is what aquaphotomics takes advantage of. As a 
result of the different perturbations, whether physical 
or chemical, the absorption pattern is altered, and 
so using the spectral signal responses of water, it is 
sometimes possible to detect components that are 
present in quantities even a few orders of magnitude 
lower than in the case of conventional NIR analysis.

The quality of ground products made from paprika 
is determined by health safety, as well as values 
for use (shelf life, packaging), nutritional physiology 
and enjoyment. Perhaps the most important 
quality indicators of commercially available ground 
paprika are color and taste. Hungarian paprika is a 
profitable and important export product, which may 
justify counterfeiting. Food counterfeiting is also 
a food safety issue. To detect food counterfeiting, 
whether by natural or artificial substances, indirect 
methods are commonly used. Rapid, reliable, non­
destructive and chemical-free testing methods 
are especially common in food quality assurance. 
NIR spectroscopy, complemented by multivariate 
statistical analysis, is perfectly suitable for this 
purpose. The aim of the present study was to use the 
aquaphotomics methodology for the investigation 
of ground paprika samples counterfeited with corn 
flour. The methodology includes experimental 
design, setting up the measurement system, 
performing the individual experiments in random 
order under defined perturbations, analysis and 
pretreatment of raw data and data analysis using 
chemometric methods. The purpose of these is to 
identify absorption bands characteristic of water and 
corresponding to the perturbation (concentration 
change), and to summarize the spectral pattern thus 
determined on an aquagram.

The results of the PLS regression model showed 
a strong correlation (model construction: R2=0.97; 
model validation R2CV=0.90) between the amounts of 
corn flour estimated by NIR and the actual amounts 
added. The model was able to correctly estimate the

amount of corn flour added with an error of 2.14% 
during the construction of the model and with an error 
of 4.04% during the validation. The results illustrated 
on the aquagram reflect the tendency that authentic 
samples and samples containing minimal amounts of 
corn flour contain more hydrogen bonded water, as 
shown by the first harmonic range (-1,450 nm) of the 
O-H valence vibration, than samples counterfeited to 
a larger extent.

The NIRS-based method used in the research 
provides objective results quickly and with sufficient 
sensitivity. The results of the analyses help to gain 
more information about the characteristics of quality 
products, and to detect their genuineness and 
counterfeiting.
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