Borsuk Mikhail and Wiśniewski Damian: The Dirichlet problem in an unbounded cone-like domain for second order elliptic quasilinear equations with variable nonlinearity exponent. (2023)
![]() |
Teljes mű
ejqtde_2023_033.pdf Download (1MB) |
Abstract
In this paper we consider the Dirichlet problem for quasi-linear second-order elliptic equation with the m(x)-Laplacian and the strong nonlinearity on the right side in an unbounded cone-like domain. We study the behavior of weak solutions to the problem at infinity and we find the sharp exponent of the solution decreasing rate. We show that the exponent is related to the least eigenvalue of the eigenvalue problem for the Laplace–Beltrami operator on the unit sphere.
Item Type: | Journal |
---|---|
Publication full: | Electronic journal of qualitative theory of differential equations |
Date: | 2023 |
Number: | 33 |
ISSN: | 1417-3875 |
Number of Pages: | 20 |
Language: | English |
Place of Publication: | Szeged |
DOI: | 10.14232/ejqtde.2023.1.33 |
Uncontrolled Keywords: | Elliptikus egyenlet, Laplace-egyenlet, Dirichlet probléma |
Additional Information: | Bibliogr.: p. 17-20. ; összefoglalás angol nyelven |
Date Deposited: | 2023. Nov. 16. 13:58 |
Last Modified: | 2023. Nov. 16. 13:58 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/82283 |
Actions (login required)
![]() |
View Item |