The Dirichlet problem in an unbounded cone-like domain for second order elliptic quasilinear equations with variable nonlinearity exponent

Borsuk Mikhail and Wiśniewski Damian: The Dirichlet problem in an unbounded cone-like domain for second order elliptic quasilinear equations with variable nonlinearity exponent. (2023)

[thumbnail of ejqtde_2023_033.pdf] Teljes mű
ejqtde_2023_033.pdf

Download (1MB)

Abstract

In this paper we consider the Dirichlet problem for quasi-linear second-order elliptic equation with the m(x)-Laplacian and the strong nonlinearity on the right side in an unbounded cone-like domain. We study the behavior of weak solutions to the problem at infinity and we find the sharp exponent of the solution decreasing rate. We show that the exponent is related to the least eigenvalue of the eigenvalue problem for the Laplace–Beltrami operator on the unit sphere.

Item Type: Journal
Publication full: Electronic journal of qualitative theory of differential equations
Date: 2023
Number: 33
ISSN: 1417-3875
Number of Pages: 20
Language: English
Place of Publication: Szeged
DOI: 10.14232/ejqtde.2023.1.33
Uncontrolled Keywords: Elliptikus egyenlet, Laplace-egyenlet, Dirichlet probléma
Additional Information: Bibliogr.: p. 17-20. ; összefoglalás angol nyelven
Date Deposited: 2023. Nov. 16. 13:58
Last Modified: 2023. Nov. 16. 13:58
URI: http://acta.bibl.u-szeged.hu/id/eprint/82283

Actions (login required)

View Item View Item