The family of cubic differential systems with two real and two complex distinct infinite singularities and invariant straight lines of the type (3, 1, 1, 1)

Bujac Cristina and Schlomiuk Dana and Vulpe Nicolae: The family of cubic differential systems with two real and two complex distinct infinite singularities and invariant straight lines of the type (3, 1, 1, 1). (2023)

[thumbnail of ejqtde_2023_040.pdf] Teljes mű
ejqtde_2023_040.pdf

Download (2MB)

Abstract

In this article we consider the class CSL2r2c∞ 7 of non-degenerate real planar cubic vector fields, which possess two real and two complex distinct infinite singularities and invariant straight lines of total multiplicity 7, including the line at infinity. The classification according to the configurations of invariant lines of systems possessing invariant straight lines was given in articles published from 2014 up to 2022. We continue our investigation for the family CSL2r2c∞ 7 possessing configurations of invariant lines of type (3, 1, 1, 1) and prove that there are exactly 42 distinct configurations of this type. Moreover we construct all the orbit representatives of the systems in this class with respect to affine group of transformations and a time rescaling.

Item Type: Journal
Publication full: Electronic journal of qualitative theory of differential equations
Date: 2023
Number: 40
ISSN: 1417-3875
Number of Pages: 94
Language: English
Place of Publication: Szeged
DOI: 10.14232/ejqtde.2023.1.40
Uncontrolled Keywords: Differenciálegyenlet
Additional Information: Bibliogr.: p. 90-94. ; összefoglalás angol nyelven
Date Deposited: 2023. Nov. 16. 15:35
Last Modified: 2023. Nov. 16. 15:35
URI: http://acta.bibl.u-szeged.hu/id/eprint/82290

Actions (login required)

View Item View Item