SURFACTANT-FREE SYNTHESIS OF ZnO/Bi₂WO₆ FLOWERLIKE WITH UV-LIGHT-INDUCED PHOTOCATALYTIC ACTIVITY

<u>Aicha Elaouni, ^{1,2} Gergő Ballai, ² Ákos Szamosvölgyi, ² Zoltán Kovács, ² Zsolt Pap, ² Henrik Haspel, ^{3,4} Zoltán Kónya, ^{2,3,4} Hassan Ait Ahsaine, ¹ Mohamed Saadi¹</u>

¹Mohammed V University in Rabat - Faculty of Science, Centre des Sciences des Matériaux, Laboratoire de Chimie Appliquée des Matériaux, Rabat, Morocco.
²University of Szeged - Faculty of Science and Informatics, Department of Applied and Environmental Chemistry, Szeged, Hungary
³ELKH-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, Szeged, Hungary
⁴Centre of Excellence for Interdisciplinary Research, University of Szeged, Szeged, Hungary e-mail: aicha.elaouni@um5r.ac.ma

Abstract

I hereby present the recent experimental findings and the key concepts of our laboratory's research on photocatalytic degradation. Bi₂WO₆ with a flower-like structure was successfully synthesized by two different surfactants e.i. hexadecyltrimethylammonium bromide (CTAB) and polyvinylpyrrolidone (PVP), via hydrothermal method to control various properties of the resulting material (particle size, morphology, crystallinity, surface area, band gap, etc.). Subsequently, our investigation focused on the creation of a ZnO/Bi₂WO₆ heterojunction photocatalyst designed for efficient photodegradation of pollutants. To analyze the material's characteristics, we employed techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and diffuse reflectance UV-vis spectroscopy (UV-DRS). However, the ZnO/Bi₂WO₆ heterojunction exhibited tunable properties and demonstrated highly efficient phenol degradation with a remarkable degradation rate compared to the as-synthesized Bi₂WO₆.