SIMULTANEOUS ANALYSIS OF STILBENES, CHROMATOGRAPHIC DESIGN AND APPLICATION

Zahraa Ali¹, Csilla Zsuzsanna Dávid², Andrea Vasas², István Ilisz¹, Róbert Berkecz¹

¹Intitute of Pharmaceutical Analysis, University of Szeged, Somogyi utca 4. H-6720 Szeged, Hungary ²Department of Pharmacognosy, University of Szeged, Szeged Eotvos u. 6, H-6720 Szeged, Hungary e-mail: ali.zahraa@o365.u-szeged.hu

Introduction

Stilbenes are non-flavonoid phenolic secondary metabolites found in various medicinal plants and foods. They possess antioxidant, anti-inflammatory, antitumor, cardioprotective, and antiaging effects. Only a few data are available for analysis of stilbenes such as cis-miyabenol C, kobophenol A, carexinol A, and hopeaphenol in the literature [1]. Furthermore, no analytical method has been reported for the simultaneous analysis of these stilbenes using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS).

Experimental

An efficient targeted UHPLC-MS/MS method was developed for the simultaneous determination of stilbene derivatives in the plant extract. For the development of UHPLC separation of stilbenes, a three-dimensional model of the *in-silico* simulation software DryLab[®]4 was used based on our preliminary UHPLC-MS/MS measurements. The MS/MS detection was performed using optimized electrospray ionization (ESI) multiple reaction monitoring (MRM) mode.

Results and discussion

For ESI of stilbenes, higher ionization efficiency was observed in the negative electrospray mode than in the positive mode. The fragmentation behaviors of stilbenes were studied based on MS/MS measurements, and the proper fragment ions with related optimized collision energies were selected for UHPLC-MS/MS analysis. The software-based chromatographic modeling succeeded in predicting the retention times and the most appropriate conditions of the separation and was confirmed by HPLC-MS/MS measurements

Conclusion

The developed reversed-phase UHPLC-MS/MS method was successfully applied to analyze stilbenes in plant extract.

Acknowledgements

This work was supported by National Research, Development, and Innovation Office-NKFIA through projects: National Laboratory of Translational Neuroscience (NLTN) "Neurodevelopmental disorders" "Adult nervous system disorders" (RRF-2.3.1-21-2022-00011). Project no. TKP2021-EGA-32 has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-EGA funding scheme. The authors are grateful to Dr. Imre Molnár, the founder of "Molnár-Institute for Applied Chromatography" for providing us a license to DryLab®4.

References

[1] L. Hoferer, V.L.R. Guimarã Abreu, F. Graßl, O. Fischer, M. R. Heinrich, and S. Gensberger-Reigl. ACS Food Sci. Technol. 3, (2023), 1057–1065.