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Abstract 

A diisopropyl ether (DIPE) degrader bacterium, Mycolicibacterium sp. strain CH28 was 

isolated from a pharmaceutical groundwater. Based on our results strain CH28 is capable of the 

complete mineralization of DIPE with a maximum degradation rate of 1.63 ± 0.03 nmol min-1 

mg biomass-1. We proposed the metabolic pathway of microbial DIPE degradation in our isolate 

based on the detection of 2-propanol, acetone, and acetate as degradation intermediates. Our 

results revealed that strain CH28 holds great potential in the bioremediation of sites 

contaminated with fuel oxygenate ethers (e.g.: DIPE). 
 

Introduction 

Fuel oxygenate ethers, like methyl tert-butyl ether (MTBE), ethyl tert-butyl ether 

(ETBE), tert-amyl methyl ether (TAME), and diisopropyl ether (DIPE) have been increasingly 

used since the 1970s as octane enhancers to replace lead and induce complete fuel combustion 

[1]. There are various treatment methods for degrading ether oxygenates from the contaminated 

medium including air stripping, absorption [2], adsorption [3], chemical oxidation [4], 

additionally several combined physical/chemical and biological processes are also spreading 

[5]. Despite these compounds are usually poorly biodegradable because of their highly stable 

ether bonds and branched carbon structure [1], biological treatment is the most common method 

of remediating ether-polluted wastewaters [6]. 

DIPE is widely used as an industrial solvent for oils, waxes, dyes, and resins [7], and 

for the extraction and purification of many compounds [8]. To date, only three bacterial isolates 

have the ability to degrade DIPE have been described: Rhodococcus ruber IFP 2001 [9], 

Pseudonocardia sp. strain ENV478 [10], and Aquincola tertiaricarbonis L108 [11]. 

In this abstract, we describe the kinetics and some intermediates of DIPE biodegradation 

observed regarding Mycolicibacterium sp. strain CH28, furthermore, we propose a part of the 

degradation pathway of aerobic DIPE mineralization as well.  

 

Results and discussion 

Resting cell experiments with Mycolicibacterium sp. strain CH28 

To measure the DIPE-degrading capacity of strain CH28 resting cell, experiments were 

carried out with 200 mg l-1 DIPE. The total amount of DIPE was efficiently mineralized in less 

than 11 hours, the maximum degradation rate was 1.63 ± 0.03 nmol min-1 mg biomass-1. The 

rate of DIPE degradation was seemed to be of the same magnitude as for the previously 

described strains [9-11]. During the experiment, acetone and acetate were detected as 

intermediates (Figure 1). This was the first time that acetate had been identified as a degradation 

intermediate of DIPE biodegradation. 
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Figure 1. Degradation of DIPE by Mycolicibacterium sp. strain CH28 resting cells. Cells were 

pre-grown in SMM supplemented with 200 mg l-1 DIPE. The concentrations of DIPE (abiotic 

controls (□); bioaugmented systems (▲)), acetone (●), and acetate (◊) were monitored. Error 

bars indicate the standard deviations of three parallel measurements. 

 

Biodegradation pathway of DIPE in Mycolicibacterium sp. strain CH28 

Biodegradation of ether oxygenates such as MTBE, ETBE, dimethyl ether, diethyl ether, and 

aralkyl ethers was described to proceed through an O-dealkylation reaction [12]. Generally, this 

process is catalyzed by monooxygenases, during the degradation an oxygen atom incorporates 

to the alpha carbon atom of the ether bond. This results the formation of an unstable hemiacetal 

structure which spontaneously decomposes to an alcohol and a carbonyl compound [1]. O-

dealkylation of DIPE generates to the simultaneous formation of 2-propanol and acetone. Most 

likely, 2-propanol is converted to acetone by a secondary alcohol dehydrogenase. These results 

are in good agreement with our experiments since we have managed to detect 2-propanol (in 

microcosm studies, data not shown) and acetone as degradation intermediates (Figure 2). 

Considering our and the above showed results we propose the upper pathway of DIPE 

degradation by strain CH28 (Figure 3) resulting in the formation of 2-propanol and acetone as 

the major intermediates. 

The lower pathway of DIPE biodegradation includes the degradation of acetone 

producing CO2 and bacterial biomass. Microbial metabolism of acetone has been well-studied 

in general, five major pathways were revealed [13]. Two of these involve the formation of 

formaldehyde but we could not detect this intermediate in any of our samples. Strain CH28 is 

not capable of the biodegradation of formaldehyde, so if it had been formed, it would have 

accumulated. During the biodegradation of DIPE, acetate was generated by strain CH28. 

Accordingly, it could be formed virtually in all the reported acetone degradation pathways. 

However, further research is required to clarify the actual biodegradation pathway of acetone 

in strain CH28 (Figure 3). 
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Figure 2. Acetone (at tR=2.578 min) and 2-propanol (at tR=2.829 min) as identified 

intermediates of DIPE degradation by Mycolicibacterium sp. strain CH28 in our experiments 

(a), with mass spectra of acetone and 2-propanol from the microcosm samples (b and c, 

respectively) and from the NIST/EPA/NIH Mass Spectral Library (Version 2.0f, NIST, 

Gaithersburg, MD, USA) (d and e, respectively). 
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Figure 3. Upper pathway of DIPE biodegradation by Mycolicibacterium sp. strain CH28. 

 

Conclusions 

 Mycolicibacterium sp. CH28, isolated from a pharmaceutical groundwater, is a powerful 

DIPE-degrader. Regarding strain CH28, major part of upper DIPE-degradation pathway was 

revealed, however, further studies are needed to clarify the exact lower degradation pathway as 

well.  
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