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Az ultrardvid, femto- €s attoszekundumos tartoméanyba esé 1ézerimpulzusok nemcsak a fizikai
alapkutatasban, hanem biologiai, orvosi ¢és ipari alkalmazasokban is forradalmi attérést jelentenek.
Az ilyen impulzusok alkalmazasa olyan 1j Ilehetoségeket teremt, amelyek tilmutatnak a
hagyomanyos spektroszkopiai technikdk idoéfelbontasan. A kiilonb6zé iddbeli dinamikék
megértéséhez olyan detektaldsi modszerekre van sziikség, amelyek idéfelbontdsa meghaladja a
vizsgalt jelenségek karakterisztikus iddskalait [1, 2]. A fényimpulzusok terjedését ¢és kiilonb6zd
anyagokkal valé kolcsonhatasat jelentdsen befolyésolja az ugynevezett vivé-burkolo fazis (Carrier-
envelope phase, CEP), ami Iényegében a maximalis térerdsség idébeli eltolodasat jelenti az impulzus
burkol6janak maximumahoz képest [3, 4, 5, 6, 7].

A CEP ismeretének jelentdsége kiillondsen megnd, amikor a cél nem csupan az impulzus
energiatartalmanak becslése, hanem annak pontos idébeli szerkezete is Iényeges [8]. A vivo-burkold
fazis (CEP) szerepe ebben a kontextusban kiilondsen fontos: a fényimpulzus idébeli szerkezetét
alapvetden meghatarozd paraméterrél van szo, amely érzékenyen befolyasolja az anyaggal valo
kolecsonhatds sordn keltett toltésaramot is [3, 8, 9]. Mivel a CEP meghatarozasa kozvetleniil nem
egyszerd, olyan kozvetett modszerek irant mutatkozik igény, amelyek soran példaul a szilardtestben
keletkezd toltésbol kovetkeztethetiink a fényimpulzus fazisara [10, 11].

A kutatas soran egy egydimenzios szildrdtestmodellt alkalmazunk, amelyben a 1ézertér és az anyag
kozotti kolesonhatast explicit modon vessziik figyelembe az 1d6fliggd szemiklasszikus Hamilton-
operatorban. A leiras az id6fiiggé Schrodinger-egyenlet egyelektron-kozelitésére éptl. A
hullamfliggvény id6éfejlodését split-operator modszerrel oldjuk meg, amely garantdlja a numerikus
stabilitast €s az impulzus finom jellemzdinek megdrzését [12]. Az altalunk alkalmazott Green-
fiiggvény modszer és komplex elnyeld potencial kombinalt hasznalata lehetdséget ad a rendszer nyilt
kvantummechanikai leirasara, igy a kilépé komponensek is kvantitativan vizsgalhatok [13]. Ez
lényeges eldrelépést jelent a zart rendszerekre korlatozott hagyomanyos TDSE-megoldasokkal
szemben.

A numerikus vizsgalatok soran kiilonféle impulzusparamétereket teszteliink: az impulzus idétartamat,
csucstérerdssegét, burkolo alakjat és a CEP értékét. A kilépd toltésaramot a kolcsonhatasi
tartomanyon kiviil integraljuk, igy meghatdrozhaté az impulzus altal kdzvetleniil 1étrehozott toltés.
Az eddigi szimulaciok alapjan a kilépd toltések iranya és mennyisége szignifikansan valtozik a CEP
fiiggvényében. Megfigyelhetd példaul, hogy a toltésaram polaritasa idonként megfordul, amennyiben
a CEP eltolodik n radiannal. Ezzel a tulajdonsaggal nemcsak karakterizalhat6 egy adott impulzus,
hanem akar olyan vezérelt anyagkdlcsonhatasok is megvalodsithatok, ahol a toltésirany szandékosan
valtoztathato a fényparaméterek altal.

Tovabblépésként célunk a modell altalanositasa tobb rétegii rendszerekre, és ezeknek az elméleti és
numerikus vizsgalata olyan anyagkombinacidkra, mint példaul GaN, HfO. vagy SiO.. Az
anyagjellemzdk (pl. effektiv tomeg) kiilonb6z6 beallitasai révén az impulzus athatolasa, szorddasa is
modellezhetd.

Osszegzésként elmondhatd, hogy a bemutatott kvantummechanikai modell igéretes eszkdzt jelent az
ultrardvid impulzusok vizsgalataban, kiilonos tekintettel a vivo-burkolo fazis altal befolyasolt
toltésdramokra. A modszer €érzékenysége, a numerikus implementacid rugalmassaga, valamint az
elméleti alapok 4ltal biztositott értelmezhetdség alkalmassa teszi a modellt kisérleti egyiittmiikddések
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keretében torténd validalasra és alkalmazasra. A kutatds gyakorlati jelentdsége abban rejlik, hogy a
fény—anyag kolcsonhatas finom paraméterei kvantitativan befolyasolhatjak a detektalt toltésaramot,
¢s ez kisérleti visszacsatolast adhat az impulzusok optimalizalasahoz [9]. A program Python nyelvii
implementacioban késziil, Jupyter notebook kornyezetben, és nyilt forrask6di formaban lesz elérhetd
GitHub-on, igy egyszeriien adaptalhaté mas kutatocsoportok szamara is.
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