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Az ultrarövid, femto- és attoszekundumos tartományba eső lézerimpulzusok nemcsak a fizikai 

alapkutatásban, hanem biológiai, orvosi és ipari alkalmazásokban is forradalmi áttörést jelentenek. 

Az ilyen impulzusok alkalmazása olyan új lehetőségeket teremt, amelyek túlmutatnak a 

hagyományos spektroszkópiai technikák időfelbontásán. A különböző időbeli dinamikák 

megértéséhez olyan detektálási módszerekre van szükség, amelyek időfelbontása meghaladja a 

vizsgált jelenségek karakterisztikus időskáláit [1, 2]. A fényimpulzusok terjedését és különböző 

anyagokkal való kölcsönhatását jelentősen befolyásolja az úgynevezett vivő-burkoló fázis (Carrier-

envelope phase, CEP), ami lényegében a maximális térerősség időbeli eltolódását jelenti az impulzus 

burkolójának maximumához képest [3, 4, 5, 6, 7]. 

A CEP ismeretének jelentősége különösen megnő, amikor a cél nem csupán az impulzus 

energiatartalmának becslése, hanem annak pontos időbeli szerkezete is lényeges [8]. A vivő-burkoló 

fázis (CEP) szerepe ebben a kontextusban különösen fontos: a fényimpulzus időbeli szerkezetét 

alapvetően meghatározó paraméterről van szó, amely érzékenyen befolyásolja az anyaggal való 

kölcsönhatás során keltett töltésáramot is [3, 8, 9]. Mivel a CEP meghatározása közvetlenül nem 

egyszerű, olyan közvetett módszerek iránt mutatkozik igény, amelyek során például a szilárdtestben 

keletkező töltésből következtethetünk a fényimpulzus fázisára [10, 11]. 

A kutatás során egy egydimenziós szilárdtestmodellt alkalmazunk, amelyben a lézertér és az anyag 

közötti kölcsönhatást explicit módon vesszük figyelembe az időfüggő szemiklasszikus Hamilton-

operátorban. A leírás az időfüggő Schrödinger-egyenlet egyelektron-közelítésére épül. A 

hullámfüggvény időfejlődését split-operator módszerrel oldjuk meg, amely garantálja a numerikus 

stabilitást és az impulzus finom jellemzőinek megőrzését [12]. Az általunk alkalmazott Green-

függvény módszer és komplex elnyelő potenciál kombinált használata lehetőséget ad a rendszer nyílt 

kvantummechanikai leírására, így a kilépő komponensek is kvantitatívan vizsgálhatók [13]. Ez 

lényeges előrelépést jelent a zárt rendszerekre korlátozott hagyományos TDSE-megoldásokkal 

szemben. 

A numerikus vizsgálatok során különféle impulzusparamétereket tesztelünk: az impulzus időtartamát, 

csúcstérerősségét, burkoló alakját és a CEP értékét. A kilépő töltésáramot a kölcsönhatási 

tartományon kívül integráljuk, így meghatározható az impulzus által közvetlenül létrehozott töltés. 

Az eddigi szimulációk alapján a kilépő töltések iránya és mennyisége szignifikánsan változik a CEP 

függvényében. Megfigyelhető például, hogy a töltésáram polaritása időnként megfordul, amennyiben 

a CEP eltolódik π radiánnal. Ezzel a tulajdonsággal nemcsak karakterizálható egy adott impulzus, 

hanem akár olyan vezérelt anyagkölcsönhatások is megvalósíthatók, ahol a töltésirány szándékosan 

változtatható a fényparaméterek által. 

Továbblépésként célunk a modell általánosítása több rétegű rendszerekre, és ezeknek az elméleti és 

numerikus vizsgálata olyan anyagkombinációkra, mint például GaN, HfO₂ vagy SiO₂. Az 

anyagjellemzők (pl. effektív tömeg) különböző beállításai révén az impulzus áthatolása, szóródása is 

modellezhető. 

Összegzésként elmondható, hogy a bemutatott kvantummechanikai modell ígéretes eszközt jelent az 

ultrarövid impulzusok vizsgálatában, különös tekintettel a vivő-burkoló fázis által befolyásolt 

töltésáramokra. A módszer érzékenysége, a numerikus implementáció rugalmassága, valamint az 

elméleti alapok által biztosított értelmezhetőség alkalmassá teszi a modellt kísérleti együttműködések 
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keretében történő validálásra és alkalmazásra. A kutatás gyakorlati jelentősége abban rejlik, hogy a 

fény–anyag kölcsönhatás finom paraméterei kvantitatívan befolyásolhatják a detektált töltésáramot, 

és ez kísérleti visszacsatolást adhat az impulzusok optimalizálásához [9]. A program Python nyelvű 

implementációban készül, Jupyter notebook környezetben, és nyílt forráskódú formában lesz elérhető 

GitHub-on, így egyszerűen adaptálható más kutatócsoportok számára is. 
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