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A bemutatott poszter két hasonló rendszert vizsgál. Mindkettő esetben egy parametrikus oszcillátorról 

van szó, ahol egy rezonátorban olyan nemlineáris kristály van elhelyezve, mely a bejövő pumpa 

fotonokat degenerált illetve nem degenerált módusú fotonokká konvertálja le (1. ábra). A jobb oldalt 

kilépő teret visszavezetjük a másik oldal bemenetére egyirányú haladást biztosítva. A menetközben 

fellépő extra fázistolásokat együttesen vesszük figyelembe. Az intenzitásvesztést és zajt egy 

nyalábosztó segítségével modellezzük a hurokban. Mindeközben a visszacsatolás hatását a 

parametrikus oszcillátorok kimenetére jellemző préseltségre, illetve összefonódottságra a kimeneti 

jel zaj-teljesítményspektrumának meghatározásával vizsgáljuk. A nemdegenerált parametrikus 

oszcillátor (NDPO) terének EPR-típusú összefonódottságának a mértékét a kétmódusú préseltségével 

azonosítjuk. Így a nemdegenerált esetet a korábban vizsgált degenerált parametrikus oszcillátor 

(DPO) préseltségéhez [1-2] sok hasonlóság fűzi. 

             
1. ábra: A vizsgált Degenerált (bal) és Nem-degenerált (jobb) parametrikus oszcillátoroknak 

megfelelő késleltetett koherens visszacsatolást tartalmazó elméleti elrendezés. A zajt egy 

nyalábosztóval modellezzük (visszaverődési ráta L, La) a visszacsatolási hurokban. Az erősítőket 

körülölelő rezonátorok mindkét oldalt nyitottak, így például egy optikai kábellel összecsatolhatók. A 

visszacsatolt tér csak egy irányban halad. 

Visszacsatolás nélkül a rendszerek a legerősebb préseltséget a lekonvertált módus frekvenciájánál 

érik el adott pumpaerősség esetén. A késleltetéses visszacsatolás bevezetése módosíthatja ezt a 

frekvenciát, sőt még a szükséges pumpaintenzitást is csökkentheti. Ahhoz, hogy a lehető legjobb 

paraméterkombinációt megtaláljuk a kvantumos modellt parametrikus közelítésben vizsgáljuk, mely 

alacsony lekonvertált intenzitás esetén egy jó közelítés. Többnyire a nem-degenerált eset egyenleteit 

közöljük [3], melyből könnyen származtathatók a degenerált esetre vonatkozó kifejezések is. A 

vizsgált Hamilton operátor ebben az esetben a következőképpen írható fel parametrikus közelítésben: 

𝐻̂ = 𝛥(𝑎̂†𝑎̂ − 𝑏̂†𝑏̂) + 𝑖(𝜀𝑎̂†𝑏̂† − 𝜀∗𝑎̂𝑏̂), (1) 

ahol 𝑎̂ és 𝑏̂ a két lekonvertált módus operátorai. Δ a pumpáló tér frekvenciájának felétől való eltérése 

e módusoknak, mely akkor lehet 0, ha azok rezonanciafrekvenciája nem különbözik, de 
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polarizációjuk ortogonális. 𝜀 a pumpáló tér és a kristály nemlinearitásának kombinált parametrikus 

együtthatója. A visszacsatolás az egyébként markovi időfejlődést adó környezetnek memóriát 

kölcsönöz, mely jelentősen megváltoztatja a rendszert és így kimeneti jelének is a dinamikáját. Ezt a 

következő Heisenberg mozgásegyenletekkel lehet leírni: 
𝑑𝑎̂

𝑑𝑡
= −(𝜅𝑎 + 𝑖𝛥)𝑎̂(𝑡) + 𝜀𝑏̂†(𝑡) − 𝑒𝑖𝜙𝑎𝑘𝑎𝑎̂(𝑡 − 𝜏𝑎) − √2𝜅𝑎𝑎̂𝑖𝑛(𝑡), (2) 

𝑑𝑏̂

𝑑𝑡
= −(𝜅𝑏 − 𝑖𝛥)𝑏̂(𝑡) + 𝜀𝑎̂†(𝑡) − 𝑒𝑖𝜙𝑏𝑘𝑏𝑏̂(𝑡 − 𝜏𝑏) − √2𝜅𝑏𝑏̂𝑖𝑛(𝑡), (3) 

ahol 𝑘𝛼 = 2√𝜅1,𝛼𝜅2,𝛼(1 − 𝐿𝛼), 𝛼 ∈ {𝑎, 𝑏} és 

𝛼̂𝑖𝑛(𝑡) =
1

√2𝜅𝛼

{√2𝜅1,𝛼𝛼̂1,𝑖𝑛(𝑡) + √2𝜅2,𝛼[√1 − 𝐿𝛼𝑒𝑖𝜙𝛼𝛼̂1,𝑖𝑛(𝑡 − 𝜏𝛼) + √𝐿𝛼𝜉𝛼(𝑡)]}, (4) 

melynek kommutációs relációjából is előtűnik a nem-markovi jelleg: 

[𝛼̂𝑖𝑛(𝑡), 𝛼̂𝑖𝑛
† (𝑡′)] = 𝛿(𝑡 − 𝑡′) +

𝑘𝛼

2𝜅𝛼
[𝑒𝑖𝜙𝑎𝛿(𝑡 − 𝑡′ − 𝜏𝛼) + 𝑒−𝑖𝜙𝑎𝛿(𝑡 − 𝑡′ + 𝜏𝛼)]. (5) 

Mivel a dinamikai egyenletek (2-3) lineárisak, a megoldást könnyen felírhatjuk Fourier-térben, ahol 

a (4)-ben szereplő késleltetés egy frekvenciafüggő fázisként jelenik meg. Az általunk vizsgált 

mennyiség a zaj-teljesítményspektrum, melyet NDPO esetén általánosított kvadratúrákra 

értelmezünk: 

𝑋̂𝜃′
𝐺  = 𝑋̂𝑎,𝜃𝑎

′  + 𝑋̂𝑏𝜃𝑏
′ , 𝑌𝜃′

𝐺  = 𝑌̂𝑎,𝜃𝑎
′ − 𝑌̂𝑏𝜃𝑏

′ (6) 

melyekből a zajspektrum a következőképp definiálható [4-6]: 

𝒳𝜃′,𝑜𝑢𝑡(𝜈) = ∫ [〈(∆𝑋̂̃𝜃′,𝑜𝑢𝑡
𝐺  )

2
(𝜈, 𝜈′)〉 + 〈(∆𝑌̂𝜃′,𝑜𝑢𝑡

𝐺  )
2

(𝜈, 𝜈′)〉] 𝑑𝜈 
∞

−∞

(7) 

A kapott zajspektrumra példákat a 2. ábra mutat be különböző késleltetési értékek esetén.  

 
2. ábra: A vizsgált rendszerekre jellemző zajspektrum különböző késleltetést figyelembevéve a 

visszacsatolási hurokban, NDPO esetén ortogonális polarizációt vizsgálva. Paraméterek: 
𝛥

𝜅
= 0,

𝜅𝑎 = 𝜅𝑏 = 𝜅, bal oldal: 𝜙𝑎 = 𝜙𝑏 = 𝜙 = 𝜋,
𝜅1𝑎

𝜅
=

𝜅1𝑏

𝜅
=

𝜅1

𝜅
= 0.933,

𝜀

𝜅
= 0.45,  jobb oldal: 𝜙 = 0,

𝜀

𝜅
= 0.75,

𝜅1

𝜅
= 0.5. 

𝜙𝛼 = 𝜋 esetén megfigyelhető egy kritikus pumpálóerősség csökkenés, így alacsonyabb meghajtási 

intenzitás esetén is hasonlóan magas az összefonódás a két lekonvertált módus között. 𝜙𝛼 = 0-t véve 
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pedig a spektrum először szélesedik, majd a legerősebb összefonódás a rezonátor 

rezonanciafrekvenciájától eltérő frekvencián jön létre.  

A dinamikai egyenletekből megvizsgálható a rendszer lineáris stabilitása különböző 

paramétertartományok esetén. Ebből az látszik, hogy a legerősebb összefonódás szorosan 

kapcsolódik a rendszer stabilitásvesztéséhez. Így 𝜙𝛼 = 𝜋 esetén az eredeti vasvilla bifurkáció kisebb 

pumpálóerősségre tolódása következik be, míg 𝜙𝛼 = 0-t nézve egy új dinamikai viselkedés, Hopf 

bifurkáció okozza az eltérést. Ezutóbbinál új stacionárius állapot helyett állandó oszcilláció jön létre, 

ahogy a rendszer egy határciklushoz közeledik. A kritikus frekvencia meghatározását, valamint a 

jellemző paramétereket tehát a stabilitásvizsgálat adja meg. Ezek alapján a legáltalánosabb 

összefüggést az alábbi egyenlet mutatja: 

𝑐𝑜𝑠(∆𝜏𝑎,𝑐) 𝑐𝑜𝑠[|𝜈𝑐|𝜏𝑎,𝑐] ± 𝑠𝑖𝑛(∆𝜏𝑎,𝑐) 𝑠𝑖𝑛[|𝜈𝑐|𝜏𝑎,𝑐]  =  |𝜀| −  𝜅𝑎 (8) 

A legfőbb különbség a DPO és NDPO között akkor válik igazán szembetűnővé, amikor a két módus 

paraméterei eltérő értéket vesznek fel. Ebből mutat ízelítőt a 4. ábra, ahol a 𝑏̂ módusban rögzített 

késleltetés mellett változtatjuk a pumpaerősséget, valamint az 𝑎̂ módus késleltetését a 3. ábra alapján. 

Így végig Hopf bifurkáción haladunk végig, ám egyedül akkor van összefonódás-erősítés, amikor a 

két késleltetés megegyezik.    

 

3. ábra: a) A Hopf-bifurkációkat ábrázoló görbék különböző pumpaerősség (𝑥) és késleltetés 

esetén, melyet DDE-BIFTOOL [7] segítségével határoztunk meg. b) Kellőképpen nagy 

pumpaerősség esetén oszcilláló megoldás jön létre, melynek frekvenciája látható a késleltetés 

függvényében. A zöld csillaggal jelölt példaspektrumokat a mutatja. Paraméterek: ∆ =  0, 𝛼 ∈

 {𝑎, 𝑏},
𝜅1,𝛼

𝜅𝛼
= 0.5, 𝜅𝑏𝜏𝑏 = 2, 𝜙𝛼 = 0. 

 

4. ábra: Zajspektrumok a 3. ábra jelzett pontjaiban. Összehasonlítás végett a visszacsatolásmentes 

esetet is ábrázoltuk szimmetrikus (𝜅1,𝛼 = 𝜅2,𝛼, 𝛼 ∈ {𝑎, 𝑏} sárga pontozott) és egyoldalas rezonátor 

(𝜅1,𝛼 = 𝜅𝛼 kék szaggatott) esetén. Jelöltük továbbá szimmetrikus rezonátor kimenetén veszteséges 

(zöld pontozott-szaggatott) és veszteségmentes visszacsatolásnál (barna vonal) a spektrumot. A kis 

ábrák a stabilitási egyenletek megoldásait mutatják, ahol a piros pont a legnagyobb valós résszel 
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rendelkező sajátértéket jelzi. Paraméterek: 𝜃′ =  𝜋,
∆

𝜅𝛼
 =  0,

𝜅1,𝛼

𝜅𝛼
= 0.5, 𝜅𝑏𝜏𝑏 = 2, 𝜙𝛼 = 0, 𝐿𝛼 =

5% (veszteséges visszacsatolás esetén). 

A rendszer ilyen mértékű érzékenysége a két módus közötti különbségekre felveti interferometriai 

alkalmazás lehetőségét is, mivel ahogy azt korábban említettük, a késleltetés a dinamikai szerepén 

túl fázistolásként jelenik meg az egyenletekben.  

Ezzel a poszterrel tehát bemutatjuk, hogy a késleltetett koherens visszacsatolással lehetőség van a 

parametrikus oszcillátorok kimeneti jelének szabályozására. A hurok mind a dinamikában, mind a 

korrelációkban tud változást okozni. Stabilizálhat stacionárius megoldásokat, illetve oszcillációkat is. 

A kvantumos zaj hatékonyabb csökkentése érhető el vele. A zajcsökkentés produkálható veszteséges 

visszacsatolás esetén is. 
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