KVANTUMELEKTRONIKA 2025

32.
TOBBFOTONOS ALLAPOTOK ELOALLITASA JELZETT
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Tobb kvantumoptikai kisérlethez és kvantumtechnologiai alkalmazashoz sziikség van megbizhato
tobbfotonforrasra [1-3]. Az egyik kisérletileg megvaldsithato, tobbfotonos allapotok eldallitasara
alkalmas technika jelzett fotonforrasokon alapul, melyekben valamilyen nemlinearis optikai
folyamatban generalnak fotonparokat. A két modus egyikében, a ,,tétlen” moddusban adott szdmu
foton detektalasa fotonszamfeloldd detektor segitségével a megfeleld tobbfotonos allapot jelenlétét
jelzi a mésik, ,,jel” modusban [4— 7] Ezt a technikat sikeresen alkalmazték egyfoton- éllapotok
Térben multlplexelt egyfotonforrasok esetén szamos jelzett fotonforrast hasznalnak parhuzamosan
Az egyes forrasokban eldallitott fotonparok atlagos fotonszdma nak csokkentése és ezzel
parhuzamosan szamos forrds egyidejii haszndlata magas egyfotonvalosziniiséget €s alacsony
tobbfotonos hozzajarulést biztosit [8,9].

Jelen munkaban térben multiplexelt jelzett tobbfotonforrasok hasznalatat javasoljuk tobbfoton-
allapotok eldallitasara. A multiplexelt egyfotonforrasok leirasara kifejlesztett statisztikus elmélet
kiterjeszthetd multiplexelt tobbfotonforrasokra is, amelynek segitségével meghatarozhaté az
optimalis atlagos bemeneti fotonszam és a multiplexelt forrasok optimalis szama, amelyre a kimeneti
i-foton valdsziniiség maximalis [10—15]. A forrasok multiplexelésére minimum-alap, maximum-
logikaja, kimeneten bdvitett nem teljes bindrisfa-multiplexereket (OMAXV) hasznélunk, melyek
épitokovei aszimmetrikus bindris fotonrouterek [13]. Az egyfoton-allapotok keltésénél ez a
multiplexer bizonyult az egyik legjobbnak.

Térben multiplexelt tobbfotonforrasok esetén a multiplexelt egységekben fotonszamfeloldo detektort
hasznalva annak a Val(')szinﬁsége hogy a kimeneten j foton jelenik meg [9]:

p=(1-POw) s, +z (1-P@®)" sz)(Lu)p@)(z)vmz) (1)

Itt feltételeztiik, hogyha a kimenetet i fotonra szeretnénk optimalizalni, akkor a detektorok csak akkor
jeleznek, ha i fotont detektaltak. Az egyenletben a P (1) jeldli annak a valésziniiségét, hogy a
multiplexelt egységben [ fotonpar keletkezett, PP (i|1) azt a valésziniiséget jeloli, hogy az I fotonbdl
i fotont észlelt a detektor, P®)(i) pedig minden olyan esemény valdsziniisége, amikor i foton
detektalasa tortént, amely valészintiség P (1)-re Poisson-eloszlast feltételezve:
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ahol V;, a detektor hatasfok, A pedig az atlagos bemeneti fotonszam. Az (1) egyenletben megjelend
V,(j|1) tag annak a feltételes valosziniisége, hogy a multiplexer n-edik karjaban keletkezett [ fotonbol
J érkezik a kimenetre.
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1. abra

ahol V, a teljes transzmisszios egyiitthato, ami azt irja le, hogy az n-edik karban egy adott foton
mekkora valoszintiséggel éri el a kimenetet. A V},-t leir6é formula multiplexer tipusra jellemzd és a V3,
V. és V. paraméterek fliggvénye. A V, egy altaldnos veszteségi paraméter, melyet V, = 0.98
érteklinek valasztottunk minden szamolas esetén. A V. és V; transzmisszios paraméterek pedig az
aszimmetrikus fotonrouter két bemenetéhez rendelt veszteséget irja le. A leirt statisztikus elmélettel
a multiplexelt tobbfotonforrdsok optimalizalhatok, azaz meghatarozhaté a multiplexelt egységek
optimalis szama (N,pc) és a multiplexelt egységekben generalt fotonparok optimalis atlagos szdma,
azaz az optimélis 4tlagos bemeneti fotonszam (A,p¢).

Az (1) egyenlet segitségével kiszamolhato adott elvart i-fotonallapot kimenet esetén a P; y elérhetd
i-foton valdszinliség a multiplexelt egységek N szaménak fliggvényében adott veszteségi
paraméterek mellett. Az 1(a) abran ezt a P; y(N) fiiggvényt mutatjuk be OMAXV multiplexeren
alapuld térben multiplexelt tobbfotonforrasok esetén kiilonbozé i kimeneti fotonszamokat
feltételezve a jelenleg elérhetd legkisebb veszteségek esetére, azaz Vp = 0.95 detektorhatasfok,
valamint a fotonrouterek V. = 0.99 és V, = 0.985 transzmisszios egyiitthatoi esetén. Az abran az
OMAXYV multiplexereken alapuld egyfotonforrasokhoz hasonléan lokalis minimumok figyelhetk
meg. Emellett a kimeneti fotonszamtol fiiggetleniil a gérbéknek van globalis maximuma, amely
P; max érték a maximalis i-foton valdsziniliség, és az az i-t6] fliggben a multiplexelt egységek mas és
mas N, optimalis értekénel talalhato. A globalis maximumok azért jelennek meg, mert az OMAXV
multiplexer veszteségei altalaban novekednek, vagyis a multiplexel€sbdl szarmazo elény egy Nopt
optimalis érték utdn csokken, mert a jelzett fotonok elvesznek a multiplexerben. Az 1(b) dbrén a
P; max Maximalis kétfoton-valosziniiséget abrazoljuk a fotonrouterek V. és V. transzmisszios
egylitthatoi fliggvényében Vp = 0.95 detektorhatasfok esetén. Lathatd, hogy a P, .x maximalis
kétfoton-valdsziniiség természetesen csokken a transzmisszids egyiitthatok csokkend értékeinél. Més
tobbfoton-allapotok eldallitasanal hasonld viselkedés figyelhetd meg.

Az 1. tablazatban az OMAXV multiplexeren alapulé multiplexelt tobbfotonforrasok (MMPS)
segitségével elérhetd P; .y maximalis i-foton-valosziniiségeket és a megfeleld optimalis
mennyiségeket, azaz a multiplexelt egységek N,y optimalis szamat, valamint a A, optimalis atlagos
bemeneti fotonszamokat mutatjuk be a fotonrouterek V. = 0.99 és V, = 0.985 transzmisszios
egylitthatoi, valamint a V, = 0.95 detektorhatasfok mellett. A P; nax €s Nope €rtekek az 1. dbra
gorbéinek megfeleld adatok. A tdblazatban Osszehasonlitasként feltiintettik a jelzett
tobbfotonforrasok (HMPS) P; ,.x maximalis i-foton-valoszintiségét V, = 0.95 detektorhatasfok
mellett. Lathatd, hogy multiplexelt tobbfotonforrasok segitségével szignifikdnsan magasabb
tobbfoton-valoszinliségek érhetdk el, mint egyetlen jelzett tobbfotonforrassal.
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1. tablazat

MMPS}. HMPSy, —0.95

P imax N opt Aopt P imax Aopt
0.913 39 0.249 | 0.238 1

0.808 77 0.614 | 0.134
0.714 77 1.35 0.09
0.634 78 2.34 | 0.067
0.566 80 3.51 | 0.052
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A kovetkez6kben megvizsgaljuk a A,p optimalis atlagos bemeneti fotonszam, azaz a multiplexelt
egységekben generalt fotonparok optimalis atlagos szamanak viselkedését. Tehat a multiplexelt
egysegek Nop. optimalis szdama €s az atlagos bemeneti fotonszdm A,y optimalis €rteke mellett lesz
maximalis az adott P; ., i-foton-valoszinliség. A 2. abran OMAXYV tipusti multiplexeren alapulo
térben multiplexelt ketfotonforrasok esetén mutatjuk a A, optimalis atlagos bemeneti fotonszam
értékét a V. és V; transzmisszios egylitthatok fiiggvényeként V, = 0.95 detektorhatasfok mellett (2(a)
abra), illetve a V}, detektorhatasfok €s a szimmetrikus fotonroutert feltételezo V. = V; transzmisszios
egylitthatok fiiggvényeként (2(b) dbra). A 2(a) dbra mutatja, hogy a fotonrouterek transzmisszios
egyutthatdinak novelése a vizsgalt A,,. mennyiseg csokkenésehez vezet. Megjegyezziik, hogy ezzel
parhuzamosan a multiplexelt egységek N, optimalis szdma novekszik. A 2(b) abra viszont azt
mutatja, hogy a Vp noévelése magas V. =V, értékek esetén a Ao, ndvekedéséhez, mig V. =V,
alacsonyabb ertékei esetén Ay csokkenésehez vezet. Az ezen viselkedés mogott allo folyamatok
Osszetettsége miatt a multiplexelt kétfotonforrasok egy adott N szamu multiplexelt egységbdl allo és
ismert veszteségekkel jellemzett kisérleti megvalositdsa esetén az atlagos bemeneti fotonszam
optimalis értéke egyszerli megfontolasokbdl nem hatdrozhaté meg. Ehhez sziikség van a
korabbiakban leirt teljes statisztikus modell alkalmazasara.

Ebben a kdzleményben javasoltuk a korabban mar egyfoton-allapotok eldallitasahoz hasznalt térben
multiplexelt fotonforrasok alkalmazasat tobbfoton-allapotok generalasara. Ebben a rendszerben
jelzett tobbfotonforrasokat multiplexeliink, amelyekben fotonszamfeloldé detektorokkal lehet
kivalasztani az eldallitani kivant tobbfoton-allapotot. A rendszer elemzéséhez a minimum alapu,
maxi-
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2. dbra
mum logikaju kimeneten bévitett nem teljes binarisfa-multiplexert valasztottuk, amely az egyfoton-
allapotok keltésénél az egyik legjobbnak bizonyult. Egy teljes statisztikus modell alkalmazasaval

Aopt
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meghataroztuk adott veszteségi paraméterek mellett a multiplexelt egységek N,y optimalis szamat
¢s az atlagos bemeneti fotonszdm Aqp¢ optimalis értékét, amelynél a kimeneti i-foton valosziniiség
maximalis. Megmutattuk, hogy a javasolt séma segitségével akar n =5 fotonig is lehetséges
tobbfotonos allapotok eldallitasa jelentdsen magasabb tobbfoton-valoszintiségekkel, mint amekkorat
a nem multiplexelt jelzett tobbfoton-forrasokkal el lehet érni. Kétfotonforrds esetében részletesen
vizsgaltuk az atlagos bemeneti fotonszdm optimalis értékének viselkedését a veszteségi paraméterek
széles tartomanyara. Ennek a mennyiségnek helyes megvalasztasa feltétleniil sziikséges a kisérleti
megvalositas soran.
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