

RAPID FABRICATION OF UIO-66 USING A MICROWAVE-ASSISTED APPROACH AND ITS PERFORMANCE IN HYDROGEN STORAGE

Roxana Nicola^{1*}, Carmen Cretu¹, Carlo Poselle Bonaventura², Giovanni Desiderio³, Daniela Cozza⁴, Raffaele G. Agostino², Alfonso Policicchio², Ana-Maria Lacrama¹

¹“Coriolan Drăgulescu” Institute of Chemistry, Bv. Mihai Viteazu, No. 24, 300223 Timisoara, Romania

²Università della Calabria, Physics Department, Via Ponte P. Bucci – Cubo 33C 87036 Arcavacata di Rende (CS), Italy

³CNR-Nanotec, c/o Università della Calabria, Via Ponte P. Bucci, Cubo 31C, 87036 Arcavacata di Rende (CS), Italy.

⁴Chemical Engineering, Catalysis and Sustainable Processes Laboratory – CECCaSP_Lab, University of Calabria, 87036 Rende (CS), Italy
e-mail: *cc.roxana@yahoo.com

Abstract

This study presents a rapid and efficient microwave-assisted synthesis method for the synthesis of the zirconium-based metal-organic framework UiO-66, employing acetic acid as a modulating agent. X-ray diffraction (XRD) analysis confirms the successful formation of pure and crystalline UiO-66 material, with diffraction patterns matching those reported in the literature and showing no signs of structural impurities. Scanning electron microscopy (SEM) images reveal that the materials consist of small, irregularly shaped agglomerated nanoparticles. Energy-dispersive X-ray spectroscopy (EDX) analysis verifies the elemental composition of the framework, confirming the presence of zirconium (Zr), oxygen (O), and carbon (C), corresponding elements for UIO-66. The synthesized samples exhibit relatively high specific surface areas, with the maximum reaching 725 m²/g, and display a mixed porosity profile comprising both micropores and mesopores. Despite a notable deficiency of organic linkers per Zr₆ unit, the materials maintain high thermal stability. A direct correlation was observed between the increase in total specific surface area and the enhancement of microporous surface area, which in turn led to improved hydrogen (H₂) adsorption performance.