
Electronic Journal of Qualitative Theory of Differential Equations
2025, No. 13, 1–28; https://doi.org/10.14232/ejqtde.2025.1.13 www.math.u-szeged.hu/ejqtde/

Existence and regularity of solutions for a singular
anisotropic (p, q)-Laplacian with variable exponent

Abdellah Hamidi1, Abdelrachid El AmroussB 1 and Fouad Kissi2

1Department of Mathematics and Computer, Faculty of Science,
University Mohammed 1st, Oujda, 60000, Morocco

2Department of Mathematics and Computer, Faculty of Legal, Economic and Social Sciences,
University Mohammed 1st, Oujda, 60000, Morocco

Received 18 October 2024, appeared 30 April 2025

Communicated by Gabriele Bonanno

Abstract. In this paper, we investigate the existence and regularity of positive solutions
for certain singular problems that involve an anisotropic (p, q)-Laplacian-type operator
and a singular term with a variable exponent, under zero Dirichlet boundary conditions
on ∂Ω. The main equation we analyze is

−
N

∑
i=1

∂i

(
|∂iu(x)|pi−2∂iu(x)

)
−

N

∑
i=1

∂i

(
|∂iu(x)|qi−2∂iu(x)

)
=

f (x)
u(x)γ(x)

in Ω,

where Ω is a bounded, regular domain in RN , f is a positive function belonging to a
specific Lebesgue space, and γ(x) is a positive continuous function on Ω. In our study,
we do not make comparisons between pi and qi, and as a result, we show that the
solution belongs to either W1,⃗p

0 (Ω) ∩ W1,⃗q
0 (Ω) or W1,⃗p

loc (Ω) ∩ W1,⃗q
loc (Ω) depending on the

summability of f (x) and the values of γ(x). The results are achieved using approxima-
tion techniques that include truncation, comparison, and variational methods.

Keywords: anisotropic singular (p, q)-equations, approximation, variational methods,
existence and regularity results.
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1 Introduction and main results

This study investigates elliptic partial differential equations (PDEs) characterized by aniso-
tropic (p, q)-Laplacian-type operators, focusing on their mathematical properties and phys-
ical relevance. Anisotropic (p, q)-Laplacians extend the classical Laplacian by incorporating
directional dependence, making them instrumental in modeling complex phenomena in het-
erogeneous materials, such as heat conduction, fluid dynamics, and nonlinear elasticity. The
research also highlights the importance of reaction-diffusion systems in plasma physics and
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chemical reaction design, which are driven by parabolic reaction-diffusion equations.

ut − div
[
|∇u|p−2∇u

]
− div

[
|∇u|q−2∇u

]
= G(x, u).

These systems are fundamental for understanding pattern formation, wave propagation, and
turbulence control in various scientific and engineering applications. For more technical de-
tails, we point out the following refs. [4, 7, 21, 27, 47]. By examining the theoretical framework
surrounding anisotropic elliptic (PDEs) and referencing foundational works, this study un-
derscores the critical role of these mathematical constructs in solving real-world problems in
fields such as material science, image processing, and biological modeling. Can also refer to
Refs. [32, 34, 46] and the references therein.

In this paper, we focus on the study of the following anisotropic singular problem:
−

N

∑
i=1

∂i

(
|∂iu|pi−2∂iu

)
−

N

∑
i=1

∂i

(
|∂iu|qi−2∂iu

)
=

f (x)
uγ(x)

in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN is a bounded domain with a C2 boundary ∂Ω and N ≥ 3. The exponent γ(x)
is a positive continuous function on Ω, and f (x) ∈ Lr(Ω) for some r ≥ 1.

This study is inspired by the significant work of Giacomoni, Kumar, and Sreenadh [23],
who investigate a singular quasilinear elliptic equation involving the (p, q)-Laplacian operator.
In their work, the equation under consideration is

−div(|∇u|p−2∇u)− div(|∇u|q−2∇u) = f (x)
uδ in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.2)

where 1 < q < p < ∞, δ > 0, and f (x) is a nonnegative function that exhibits singular
behavior near the boundary of Ω. Their paper proves the existence of weak solutions in
appropriate Sobolev spaces and establishes the solutions’ boundary behavior for different
values of δ. Specifically, they derive optimal Sobolev regularity, prove uniqueness under
certain conditions, and provide non-existence results in other regimes. Moreover, they obtain
Hölder regularity estimates for the gradient of weak solutions, offering significant insights into
equations with singular nonlinearities. For further details, the reader is referred to [12,14] and
related references. Arruda and Nascimento [1] generalize the results of Giacomoni, Kumar,
and Sreenadh by considering a broader class of quasilinear operators beyond the standard
p-Laplacian. They study a class of nonlinear, nonhomogeneous singular elliptic equations
involving the (p, q)-Laplacian operator given by

−div(a(|∇u|p)|∇u|p−2∇u) = h(x)
uδ + f (x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.3)

where Ω is a bounded domain in RN (with N ≥ 3), 2 ≤ p < N, and δ > 0. By using
the sub–supersolution method combined with variational techniques, they establish the ex-
istence of at least one weak solution and, under additional assumptions on f , prove the
existence of two distinct solutions. Key contributions include addressing nonhomogeneous
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operators without truncation techniques and accommodating general singular terms for all
γ > 0. These results apply to a broad class of quasilinear operators, including the p-Laplacian
(when a(t) ≡ 1) and the (p, q)-Laplacian (when a(t) = 1 + tq−p/p). Interested readers are
referred to [37] and [45] for additional details.

Our work extends the (p, q)-Laplacian operators studied in (1.2) and (1.3) by introducing
two anisotropic operators with distinct vector exponents {pi}N

i=1 and {qi}N
i=1. This gener-

alization allows for direction-dependent nonlinearities, unlike the isotropic (p, q)-Laplacian.
Additionally, the right-hand side of our problem (1.1) features a variable exponent γ(x) in the
singular term f (x)

uγ(x) , which introduces spatial heterogeneity in the singularity strength. More-
over, we establish L∞-regularity for solutions to (1.1), proving that u ∈ L∞(Ω) despite the
anisotropic operators and the singular term.

The singular (q, p)-Laplacian denotes a class of singular differential equations that in-
volve both the p-Laplacian and the q-Laplacian operators. These problems frequently arise
in the study of various physical and mathematical phenomena, serving as models for steady-
state solutions of reaction-diffusion problems encountered in biophysics, plasma physics, and
chemical reaction studies (see, for example, [5, 7]). In the context of (p, q)-Laplacian-driven
reaction-diffusion equations, the (p, q)-Laplacian term represents the diffusion component of
the equation, which is given by:

|∂iu|p−2|∂iu|+ |∂iu|q−2|∂iu| in Ω,

where ∂iu denotes the partial derivative of u with respect to xi, 2 ≤ q < p. The terms
|∂iu|p−2|∂iu| and |∂iu|q−2|∂iu| represent the diffusion terms associated with the (p, q)-
Laplacian operator.

Researchers have explored various aspects of the (p, q)-Laplacian, including the existence
and uniqueness of solutions, regularity properties, and the behavior of solutions under differ-
ent conditions. Recent results in this area can be found in [2, 12, 31, 35, 36, 38]. Our research
builds on these findings by focusing on the properties of solutions in anisotropic singular
problems.

The study of elliptic equations with singular nonlinearities has garnered significant atten-
tion from researchers. A pioneering contribution was made in 1976 by Crandall, Rabinowitz,
and Tartar [11], where the authors explored nonlinear elliptic boundary value problems char-
acterized by singular terms. Their work established the existence of both classical and gen-
eralized solutions under various conditions for problems associated with −∆ and Dirichlet
boundary conditions. Specifically, when pi = qi = 2, the problem (1.1) reduces to the well-
known semilinear elliptic equation that has been extensively studied:

−div(∇u) = f (x)
uγ(x) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.4)

with f is a non-negative function in a suitable Lebesgue space. In 1991, Lazer and McKenna
published an important paper [28], focusing on the case where f is continuous and γ(x) = γ.
They proved existence and regularity results concerning the behavior of solutions near the
boundary. Boccardo and Orsina later extended this work in [3], where they used approxima-
tion methods by truncating the singular term to prove existence, regularity, and nonexistence
results for problems modeled by (1.4) with γ(x) = γ. These results were further generalized
by Chu, Y. Gao, and W. Gao [8] as well as by Carmona and Martínez-Aparicio [6], who studied
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the case where γ(x) varies as a function of x. Their research examined how the summability
of f and the values of γ(x) affect the existence and regularity of solutions to problem (1.4).

For general p, the following p-Laplacian problem has been widely studied by numerous
researchers: 

−div(|∇u|p−2∇u) = f (x)
uγ(x) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.5)

where f is a positive function and p > 1. For example, in the paper [9], Chu and Gao applied
the approximation method to analyze this problem involving the p-Laplacian operator with
a constant exponent γ(x) = γ. Subsequently, Chu, Gao, and Sun extended these results in
[10], where considering cases γ(x) varies as a function of x. Their research explored various
scenarios based on the behavior of γ(x) and f , demonstrating that solutions to problem (1.5)
exist in W1,p

0 (Ω) ∩ L∞(Ω).
There has been increasing interest in singular problems involving anisotropic operators,

which correspond to a specific case of our problem (1.1) when pi = qi. For instance, in [30],
the following problem was studied:

−
N

∑
i=1

∂i

(
|∂iu|pi−2∂iu

)
=

f (x)
uγ(x)

in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.6)

where γ(x) = γ is a positive constant and f belongs to an appropriate Lebesgue space. Using
perturbation techniques, Leggat and Miri demonstrated the existence of positive solutions
for problem (1.6). Additionally, Miri extended this analysis in [33], considering γ(x) > 0
as a variable function and f as a positive function in Lm(Ω). They established the existence
and regularity of solutions in W1,⃗p

0 (Ω) when γ(x) ≤ 1 and m = p̄∗′, and in W1,⃗p
loc (Ω) when

∥γ∥L∞(Ω) ≤ γ∗, with γ∗ > 1.
It is important to note that the results in [30] and [33] are largely based on the strong

maximum principle. Additional results on singular anisotropic problems, particularly using
the sub-supersolution method, can be found in works like [15] and [16].

In our previous work [25], we extended existing results on similar problems (1.6) by incor-
porating variable exponent singularities and critical growth within an anisotropic framework.
The problem is formulated as follows:

−
N

∑
i=1

M

(∫
Ω
|∂iu|pi dx

)
∂i

(
|∂iu|pi−2∂iu

)
=

f1(x)
uβ(x)

+ λ f2(x) u p̄∗−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

Here, Ω is a bounded regular domain in RN with N > p̄. The critical Sobolev exponent p̄∗

is given by p̄∗ = Np̄
N− p̄ , where p̄ = N

∑N
i=1

1
pi

. The parameter λ > 0 is a positive constant, while

the exponent function satisfies 0 < β(x) < 1. The functions f1 and f2 have specific properties,
and M represents the Kirchhoff coefficient.

Our main result establishes the existence of at least two weak solutions with opposite en-
ergy signs. The methodology is based on the fibering method using the Nehari manifold.
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While our variational framework shares similarities with previous works, this study extends
the analysis by considering a double anisotropic operator, singular reaction terms and regu-
larity analysis. To handle these challenges, we employ techniques such as truncation methods
and weighted Sobolev embeddings. In addition to establishing existence, we discuss various
cases of the function γ(x) to determine the corresponding solution in each scenario. Un-
der further assumptions on the function f , it is proven that the obtained solutions belong
to L∞(Ω), ensuring their boundedness and physical relevance. The incorporation of a dou-
ble anisotropic operator enriches the analysis, providing deeper insights into the behavior of
solutions in complex settings.

The techniques developed in this work not only generalize classical results but also pave
the way for future research in problems involving variable exponent spaces, nonlocal oper-
ators, and anisotropic phenomena. The rigorous approach presented here contributes to the
broader understanding of non-standard growth conditions in partial differential equations.

There is a substantial amount of literature and increasing interest in anisotropic (p, q)-
Laplacian problems. Noteworthy recent contributions can be found in works such as [29, 39,
40, 43]. For example, in [39], Razani and Figueiredo studied the following problem:−

N

∑
i=1

∂i

(
|∂iu|pi−2∂iu

)
−

N

∑
i=1

∂i

(
|∂iu|qi−2∂iu

)
= H(x, u) in Ω,

u = 0 on ∂Ω,

(1.7)

where H(x, u) = λuγ−1 with γ > 1. By applying a sub-supersolution approach along with
minimization techniques in convex sets, the authors proved the existence of positive solutions
for problem (1.7). A similar approach was used in [43], where Tavares considered problem
(1.7) with H(x, u) = k(x)uα−1 + f (x, u), where α > 1. Under a broad set of conditions, the
existence and multiplicity of solutions were demonstrated. Additionally, Leggat and Miri [29],
used the variational method to prove multiplicity results for the case where H(x, u) = λ f (u) .

We now introduce the key notations and assumptions relevant to problem (1.1). Specifi-
cally, we define the following parameters

p⃗ = (p1, . . . , pN), p̄ :=
N

∑N
i=1 1/pi

, p̄∗ :=
Np̄

N − p̄
, p∞ := max{ p̄∗, pN},

q⃗ = (q1, . . . , qN), q̄ :=
N

∑N
i=1 1/qi

, q̄∗ :=
Nq̄

N − q̄
, q∞ := max{q̄∗, qN}.

Throughout this paper, we impose the following assumptions

2 ≤ p1 ≤ p2 ≤ · · · ≤ pN < p̄∗, and
N

∑
i=1

1
pi

> 1,

2 ≤ q1 ≤ q2 ≤ · · · ≤ qN < q̄∗, and
N

∑
i=1

1
qi

> 1,

γ+ = sup
x∈Ω

γ(x), and γ− = inf
x∈Ω

γ(x).

We denote by X the anisotropic Sobolev space associated with problem (1.1), defined as

X := W1,⃗p
0 (Ω) ∩ W1,⃗q

0 (Ω),
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where Ω ⊆ RN is a bounded and regular domain with N ≥ 3. Furthermore, the space X is
given by the closure

X = C∞
0 (Ω)

∥·∥X ,

where the norm ∥ · ∥X is defined as

∥u∥X := ∥u∥
W1,⃗p

0 (Ω)
+ ∥u∥

W1,⃗q
0 (Ω)

=
N

∑
i=1

∥∂iu∥Lpi (Ω) +
N

∑
i=1

∥∂iu∥Lqi (Ω) .

Moreover, (X, ∥ · ∥X) is a uniformly convex Banach space, and consequently, it is reflexive. For
further details, see [19].

Additionally, we assume that f is a nontrivial measurable function satisfying the condition

(H f ) ess inf
Ω

f (x) > 0.

The primary objective of this article is to investigate the existence and regularity of positive
weak solutions for the singular problem (1.1) in the space X by considering various cases of
the function γ(x). Our strategy is to establish the existence of critical points for the energy
functional

Ψ(u) =
N

∑
i=1

1
pi

∫
Ω
|∂iu|pi dx +

N

∑
i=1

1
qi

∫
Ω
|∂iu|qi dx −

∫
Ω

f |u|1−γ(x) dx.

The singular term u−γ(x) introduces significant challenges by causing a loss of Gateaux dif-
ferentiability, despite Ψ being weakly lower semi-continuous (in fact, continuous). With this
framework in place, we are now ready to rigorously define the notion of a solution for the
singular problem.

Definition 1.1. A function u ∈ X is called a weak solution of (1.1) if it satisfies the following
conditions:

(i) u > 0 a.e. in Ω, f u−γ(x) ∈ L1
loc(Ω), and

(ii) ∑N
i=1
∫

Ω |∂iu|pi−2 ∂iu∂iϕdx + ∑N
i=1
∫

Ω |∂iu|qi−2 ∂iu∂iϕdx =
∫

Ω
f ϕ

uγ(x) dx,

for all ϕ ∈ C1
0(Ω).

The principal theorems established in this work are as follows:

Theorem 1.2. Suppose that f is a positive function in L1(Ω), and (H f ) holds, with 0 < γ− ≤
γ(x) ≤ γ+ < 1. Then, the problem (1.1) has a solution in X.

Theorem 1.3. Let f be a positive function in L1(Ω) and assume that condition (H f ) holds, with

0 < γ− < 1 < γ+. Then problem (1.1) admits a solution in the space Xloc := W1,⃗p
loc (Ω) ∩ W1,⃗q

loc (Ω).
Moreover, the solution u belongs to Lr(Ω), where r = N(γ+−1+m)

(N−m)
, with m = p, q.

Theorem 1.4. Assume that f is a positive function in L1(Ω) and condition (H f ) is satisfied, with
1 < γ− ≤ γ(x) ≤ γ+. Then, problem (1.1) admits a solution in the space Xloc.

Theorem 1.5. Assume that (H f ) holds and f ∈ Lr(Ω) with r ≥ min{ p̄∗,q̄∗}
min{ p̄∗,q̄∗}−max{ p̄,q̄} , and let γ(x) >

0. Then, the solution u of problem (1.1), as established by Theorems 1.2, 1.3, and 1.4, belongs to L∞(Ω).
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This paper is organized as follows. In Section 2 establishes several technical results that
are essential for proving our main theorem. We begin by presenting a regularity result for
the solution of the anisotropic (p, q)-Laplacian problem. Next, we introduce a comparison
principle, and finally, we demonstrate that the solution remains strictly greater than a posi-
tive term. Section 3 applies the variational method and leverages the auxiliary results from
Section 2 to prove that the approximate problem admits a solution in X ∩ L∞(Ω). Section 4
is dedicated to the proof of the main results, while Section 5 explores possible generalizations
of our existence result and discusses future research perspectives.

2 Preliminaries and technical results

This section is dedicated to establishing fundamental results essential for proving our main
theorems. We begin by addressing the uniqueness and L∞-regularity of solutions to the
anisotropic (p, q)-Laplacian problem under consideration. Next, we introduce a compari-
son principle and conclude with a boundary behavior lemma, which ensures that a solution u
remains bounded below by a positive quantity proportional to the distance to the boundary.
Together, these results provide crucial insights into how the anisotropic structure influences
the solution’s regularity and its interaction with the domain’s geometry. We start by examin-
ing the following anisotropic (p, q)-Laplacian problem−

N

∑
i=1

∂i

(
|∂iu|pi−2∂iu

)
−

N

∑
i=1

∂i

(
|∂iu|qi−2∂iu

)
= h(x) in Ω,

u = 0 on ∂Ω.

(2.1)

Lemma 2.1 ([43]). Let h ∈ X′. Then, the problem (2.1) has a unique solution in X.

The proof follows from Minty–Browder’s Theorem, as stated in Lemma 3.3 of [43].

Lemma 2.2. Let h ∈ Lr(Ω) with r > max{ p̄∗,q̄∗}
max{ p̄∗,q̄∗}−max{pN ,qN} . The solution u to the problem (2.1)

belongs to L∞(Ω).

Proof. Let Ωk := {x ∈ Ω : |u(x)| > k} for k > 0. Define the truncated test function

ξk := sign(u) · (|u| − k)+ ,

where (·)+ denotes the positive part. Let β := max {p∗, q∗}, where p∗ and q∗ are the criti-
cal Sobolev exponents associated with the anisotropic exponents {pi} and {qi}, respectively.
Observe that ξk ∈ X and ∂iξk = ∂iu in Ωk, while ∂iξk = 0 outside Ωk. Let |Ωk| denote the
Lebesgue measure of Ωk.

Using ξk as a test function in the weak formulation of problem (2.1) and applying Hölder’s
inequality, we can derive the following results

N

∑
i=1

∫
Ωk

|∂iξk|pi dx +
N

∑
i=1

∫
Ωk

|∂iξk|qi dx =
∫

Ω
hξkdx

≤
(∫

Ω
|ξk|β dx

) 1
β
(∫

Ω
|h|rdx

) 1
r

|Ωk|1−
1
β−

1
r . (2.2)
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Define the energy minimization problem

B := inf
u∈D1,⃗p(RN)∩D1,⃗q(RN)

∥u∥
Lβ(RN )

=1

N

∑
i=1

1
pi

∥∂iu∥
pi
Lpi (RN)

+
N

∑
i=1

1
qi
∥∂iu∥

qi
Lqi (RN)

, (2.3)

where
D1,⃗p

(
RN
)

:=
{

u ∈ L p̄∗
(

RN
)

: |∂iu| ∈ Lpi
(

RN
)}

.

Form Lemma 3 in [18], if β = p̄∗, we have

B ≥ inf
u∈D1,⃗p(RN)
∥u∥

Lp̄∗ (RN )
=1

N

∑
i=1

1
pi

∥∂iu∥
pi
Lpi (RN)

> 0.

Similarly, if β = q̄∗, the same argument yields B > 0.
By direct computation, we deduce that for every u ∈ X

N

∑
i=1

∫
Ω
|∂iu|pi dx +

N

∑
i=1

∫
Ω
|∂iu|qi dx

≥ ∥u∥θ
Lβ(Ω)

N

∑
i=1

∫
Ω

∣∣∣∣∣∂i

(
u

∥u∥Lβ(Ω)

)∣∣∣∣∣
pi

dx + ∥u∥θ
Lβ(Ω)

N

∑
i=1

∫
Ω

∣∣∣∣∣∂i

(
u

∥u∥Lβ(Ω)

)∣∣∣∣∣
qi

dx

≥ ∥u∥θ
Lβ(Ω)

[
N

∑
i=1

1
pi

∫
Ω

∣∣∣∣∣∂i

(
u

∥u∥Lβ(Ω)

)∣∣∣∣∣
pi

dx +
N

∑
i=1

1
qi

∫
Ω

∣∣∣∣∣∂i

(
u

∥u∥Lβ(Ω)

)∣∣∣∣∣
qi

dx

]
,

where

θ =

{
min{p1, q1} if ∥u∥Lβ(Ω) > 1,

max{pN , qN} if ∥u∥Lβ(Ω) ≤ 1.

Furthermore, from (2.3), we derive

N

∑
i=1

∫
Ω
|∂iu|pi dx +

N

∑
i=1

∫
Ω
|∂iu|qi dx ≥ B× ∥u∥θ

Lβ(Ω). (2.4)

Combining (2.2) and (2.4), we obtain

B

(∫
Ωk

|ξk|β dx
) θ−1

β

≤ ∥h∥Lr(Ω)|Ωk|1−
1
β−

1
r . (2.5)

Additionally, if 0 < k < ℓ, we have Ωℓ ⊂ Ωk, and

|Ωℓ|
1
β (ℓ− k) =

(∫
Ωℓ

(ℓ− k)βdx
) 1

β

≤
(∫

Ωk

|ξk|β dx
) 1

β

.

Given that θ ≥ 2, we conclude

B|Ωℓ|
θ−1

β (ℓ− k)θ−1 ≤ B

(∫
Ωk

|ξk|β dx
) θ−1

β

, (2.6)
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and by combining (2.5) and (2.6), we infer

|Ωℓ| ≤
1

(ℓ− k)βB
β

θ−1

∥h∥
β

θ−1
Lr(Ω)

|Ωk|
β

θ−1

(
1− 1

β−
1
r

)
.

Since r > max{ p̄∗,q̄∗}
max{ p̄∗,q̄∗}−max{pN ,qN} ≥ β

β−θ , we deduce that β
θ−1

(
1 − 1

β − 1
r

)
> 1. Thus, defining

ψ(h) = |Ωℓ|,
σ = β

θ−1

(
1 − 1

β − 1
r

)
,

k0 = 0,

we see that ψ is a positive, non-increasing function. Moreover,

ψ(ℓ) ≤ C
(ℓ− k)β

ψ(k)β, for all ℓ > k > 0.

Using ((i), Lemma 4.1, in [42]), we conclude that ψ(d) = 0 with dβ =
C∥h∥

β
θ−1
Lr(Ω)

|Ω|σ−1

B
β

θ−1
. Thus, we

obtain

∥u∥L∞(Ω) ≤
C∥h∥

1
θ−1
Lr(Ω)

|Ω|
σ−1

β

B
1

θ−1
.

Therefore, we have established that u ∈ L∞(Ω).

Lemma 2.3 ([43]). Consider u, v ∈ X satisfying the following in the weak sense

−
N

∑
i=1

∂i

(
|∂iu|pi−2∂iu

)
−

N

∑
i=1

∂i

(
|∂iu|qi−2∂iu

)
≤ −

N

∑
i=1

∂i

(
|∂iv|pi−2∂iv

)
−

N

∑
i=1

∂i

(
|∂iv|qi−2∂iv

)
in Ω,

(u − v)+ ∈ X.

Then, it follows that u ≤ v almost everywhere in Ω.

Regarding the proof, we refer the reader to Lemma 3.5 in [43].

Lemma 2.4. Let µ be a positive constant and u ∈ X be the unique solution to the following problem−
N

∑
i=1

∂i

(
|∂iu|pi−2∂iu

)
−

N

∑
i=1

∂i

(
|∂iu|qi−2∂iu

)
= µ in Ω,

u = 0 on ∂Ω.

(2.7)

Then, there exist constants η ∈ (0, 1] and M, which are independent of µ and u, such that

u(x) ≥ M min
{

µ
max

{
1

p1−1 , 1
q1−1

}
, µ

min
{

1
pN−1 , 1

qN−1

}}
min{η, d(x)},

with d(x) := dist(x, ∂Ω), x ∈ Ω.



10 A. Hamidi, A. El Amrouss and F. Kissi

Proof. Let ρ > 0 define the set

Aρ := {x ∈ Ω | d(x) < ρ},

where d(x) = dist(x, ∂Ω) denotes the distance from x to the boundary ∂Ω. Since the boundary
∂Ω is of class C2, there exists a sufficiently small constant η ∈ (0, 1] such that

d ∈ C2 (A3η

)
and |∇d(x)| ≡ 1,

as stated in Lemma 14.16 of Gilbarg and Trudinger [24].

For

β >
1

min{p1, q1} − 1
,

we define the function

ς(x) =



κd(x), if d(x) < η,

κη +
∫ d(x)

η
κ

(
2η − t

η

)β

dt, if η ≤ d(x) < 2η,

κη +
∫ 2η

η
κ

(
2η − t

η

)β

dt, if d(x) ≥ 2η,

where κ > 0 is a constant to be determined later. It is evident that ς ∈ C1
0(Ω).

According to direct calculations, if x ∈ Ω satisfies d(x) < η and ∂id(x) ̸= 0, then we have

−
N

∑
i=1

[
∂i

(
|∂i(κd)|pi−2 ∂i(κd)

)
+ ∂i

(
|∂i(κd)|qi−2 ∂i(κd)

)]
= −

N

∑
i=1

[
(sgn (∂id)) κpi−1∂i

(
sgn (∂id)

pi−1 (∂id)
pi−1

)]
−

N

∑
i=1

[
(sgn (∂id)) κqi−1∂i

(
sgn (∂id)

qi−1 (∂id)
qi−1

)]
= −

N

∑
i=1

[
κpi−1 (pi − 1) ((sgn (∂id)) ∂id)

pi−2 ∂2
i d
]

−
N

∑
i=1

[
κqi−1 (qi − 1) ((sgn (∂id)) ∂id)

qi−2 ∂2
i d
]

=: Υ1(x),

where sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 if x < 0. In the case where η < d(x) < 2η and
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∂id(x) ̸= 0, we find that

−
N

∑
i=1

∂i

∣∣∣∣∣∂i

(
κη +

∫ d(x)

η
κ

(
2η − t

η

)β

dt

)∣∣∣∣∣
pi−2

∂i

(
κη +

∫ d(x)

η
κ

(
2η − t

η

)β

dt

)
−

N

∑
i=1

∂i

∣∣∣∣∣∂i

(
κη +

∫ d(x)

η
κ

(
2η − t

η

)β

dt

)∣∣∣∣∣
qi−2

∂i

(
κη +

∫ d(x)

η
κ

(
2η − t

η

)β

dt

)
= −

N

∑
i=1

∂i

∣∣∣∣∣∂i(d(x))κ
(

2η − d(x)
η

)β
∣∣∣∣∣

pi−2

∂i(d(x))κ
(

2η − d(x)
η

)β


−
N

∑
i=1

∂i

∣∣∣∣∣∂i(d(x))κ
(

2η − d(x)
η

)β
∣∣∣∣∣
qi−2

∂i(d(x))κ
(

2η − d(x)
η

)β


= −
N

∑
i=1

κpi−1β (pi − 1)
(

2η − d(x)
η

)β(pi−1)−1 (−1
η

)
((sgn (∂id)) ∂id)

pi−2 (∂id)
2

−
N

∑
i=1

κpi−1
(

2η − d(x)
η

)β(pi−1)

(pi − 1) |∂id|pi−2 ∂2
i (d(x))

−
N

∑
i=1

κqi−1β (qi − 1)
(

2η − d(x)
η

)β(qi−1)−1 (−1
η

)
((sgn (∂id)) ∂id)

qi−2 (∂id)
2

−
N

∑
i=1

κqi−1
(

2η − d(x)
η

)β(qi−1)

(qi − 1) |∂id|qi−2 ∂2
i (d(x))

=: Υ2(x).

According to the previous cases, we have

N

∑
i=1

∫
Ω
|∂i(ς)|pi−2 ∂i(ς)∂iϕdx +

N

∑
i=1

∫
Ω
|∂i(ς)|qi−2 ∂i(ς)∂iϕdx =

∫
Ω

Υϕdx ∀ϕ ∈ X,

where

Υ(x) =


Υ1(x) if d(x) < η, ∂id(x) ̸= 0,

Υ2(x) if η < d(x) < 2η, ∂id(x) ̸= 0,

0 if d(x) > 2η or ∂id(x) = 0.

Given that β > 1/(min{p1, q1} − 1) and pi, qi ≥ 2 for all i = 1, . . . , N, we conclude that

N

∑
i=1

∫
Ω
|∂i(ς)|pi−2 ∂i(ς)∂iϕdx +

N

∑
i=1

∫
Ω
|∂i(ς)|qi−2 ∂i(ς)∂iϕdx

≤ M0 max
{

κp1−1, . . . , κpN−1
}
+ M1 max

{
κq1−1, . . . , κqN−1

}
≤ M max

{
κp1−1, . . . , κpN−1, κq1−1, . . . , κqN−1

}
,

in the weak sense, where M0 and M1 are the constants from Lemma 2.4 and M =

2 max{M0, M1}.
Let u be the solution to problem (2.7) and µ > 0. Now we distinguish two cases:

In the first case, if µ
M < 1, we choose κ ∈ (0, 1) such that

max
{

κp1−1, . . . , κpN−1, κq1−1, . . . , κqN−1
}
= κmin{p1−1,q1−1} =

µ

M
.
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Applying Lemma 2.3 yields

u(x) ≥ ς(x) ≥ κ min{η, d(x)} =
( µ

M

)max{ 1
p1−1 , 1

q1−1 }
min{η, d(x)}.

In the second case, when µ
M ≥ 1 we can employ the same reasoning as in the first case to

obtain

u(x) ≥ ς(x) ≥ κ min{η, d(x)} =
( µ

M

)min{ 1
pN−1 , 1

qN−1 }
min{η, d(x)}.

Consequently, we arrive at

u(x) ≥ min
{( µ

M

)max{ 1
p1−1 , 1

q1−1 }
,
( µ

M

)min{ 1
pN−1 , 1

qN−1 }
}

min{η, d(x)}.

Thus, the statement is proven.

3 Approximation problems

To formulate a minimization problem, the energy functional Ψ must be bounded from below
in X, which, unfortunately, is not the case here. Additionally, the presence of a singular term
introduces non-differentiability in the energy functional, creating an additional challenge in
defining the natural constrained set. As a result, we cannot directly apply the standard critical
point theory to Ψ to solve problem (1.1). To overcome this difficulty and obtain our result,
we study an associated approximating problem. Specifically, for any n ∈ N∗, we consider the
following perturbed problem


−

N

∑
i=1

∂i

(
|∂iun|pi−2∂iun

)
−

N

∑
i=1

∂i

(
|∂iun|qi−2∂iun

)
=

fn(
un +

1
n

)γ(x)
in Ω,

un = 0 on ∂Ω,

(Pn)

where fn(x) = min{ f (x) , n}.

Lemma 3.1. Suppose that γ ∈ C1(Ω). Then the problem (Pn) has a non-negative solution un ∈
X ∩ L∞(Ω).

Proof. While many studies rely on Schauder’s fixed point theorem to establish the existence
of solutions, this paper adopts a variational approach. We define the functions

f : Ω × (0, ∞) −→ R and fn : Ω × [0, ∞) −→ R by

f (x, t) =
f (x)
tγ(x)

, and fn(x, t) =
fn(x)

(t + 1/n)γ(x)
, for all n > 0.

It is important to note that fn is a Carathéodory function, and its primitive is given by the
function Fn, where

Fn(x, t) =
∫ t

0
fn(x, s)ds.

Remark 3.2. For t ≥ 0, the following inequalities hold

0 < fn(x, t) ≤ fn(x)n∥γ∥L∞(Ω) , and Fn(x, t) ≤ fn(x)n∥γ∥L∞(Ω) t.
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We now define the functional Ψn : X −→ R associated with the problem (Pn) as follows

Ψn(u) =
N

∑
i=1

1
pi

∫
Ω
|∂iu|pi dx +

N

∑
i=1

1
qi

∫
Ω
|∂iu|qi dx −

∫
Ω

Fn(x, u)dx.

Since it holds that

W1,⃗p
0 (Ω)

compact
↪→ Lr(Ω) for all r ∈ [1, p∞),

and
W1,⃗q

0 (Ω)
compact
↪→ Lr(Ω) for all r ∈ [1, q∞).

as established in [20]. This implies that the functional Ψn is sequentially weakly lower semi-
continuous and coercive. Indeed, we have

Ψn(u) =
N

∑
i=1

1
pi

∫
Ω
|∂iu|pi dx +

N

∑
i=1

1
qi

∫
Ω
|∂iu|qi dx −

∫
Ω

Fn(x, u)dx

≥ 1
pN NpN−1

(
N

∑
i=1

|∂iu|Lpi (Ω)

)p0

+
1

qN NqN−1

(
N

∑
i=1

|∂iu|Lqi (Ω)

)q0

− n∥γ∥L∞(Ω)

∫
Ω

fn(x)udx − 2N

≥ 1
qN pN NpN−1NqN−1

(
∥u∥p0

W1,⃗p
0 (Ω)

+ ∥u∥q0

W1,⃗q
0 (Ω)

)
− n∥γ∥L∞(Ω)

∫
Ω

fn(x)udx − 2N.

Here,
p0 = p1 if ∥u∥

W1,⃗p
0 (Ω)

> 1 and p0 = pN if ∥u∥
W1,⃗p

0 (Ω)
≤ 1,

q0 = q1 if ∥u∥
W1,⃗q

0 (Ω)
> 1 and q0 = qN if ∥u∥

W1,⃗q
0 (Ω)

≤ 1.

Observe that W1,⃗p
0 (Ω)

continuous
↪→ Lp1(Ω), implying that there exists a constant C such that,

∥u∥Lp1 (Ω) ≤ C∥u∥
W1,⃗p

0 (Ω)
. This leads to the following inequality

Ψn(u) ≥
1

qN pN NpN−1NqN−1

(
∥u∥p0

W1,⃗p
0 (Ω)

+ ∥u∥q0

W1,⃗q
0 (Ω)

)
− Cn∥γ∥L∞(Ω)∥ f ∥

Lp′1 (Ω)
∥u∥

W1,⃗p
0 (Ω)

− 2N.

Since p0, q0 ≥ 2, we have
Ψn(u) −→ +∞ as ∥u∥X −→ +∞.

Consequently, Ψn has a global minimum, denoted un. Moreover, Ψn ∈ C1(X) with derivative
at u given by

⟨Ψ′
n(u), ϕ⟩

N

∑
i=1

∫
Ω
|∂i(u)|pi−2 ∂i(u)∂iϕdx +

N

∑
i=1

∫
Ω
|∂i(u)|qi−2 ∂i(u)∂iϕdx −

∫
Ω

fn(x, u)ϕdx.

Hence, this global minimum is a critical point and thus constitutes a weak solution to the
problem (Pn). Next, we consider the following problem−

N

∑
i=1

∂i

(
|∂iwn|pi−2∂iwn

)
−

N

∑
i=1

∂i

(
|∂iwn|qi−2∂iwn

)
= n∥γ∥L∞(Ω) fn in Ω,

wn = 0 on ∂Ω.
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According to Lemmas 2.1 and 2.2 the aforementioned problem has a solution wn ∈ L∞(Ω),
whenever the right-hand side belongs to Ls(Ω) with s > max{ p̄∗, q̄∗}′. Here, max{ p̄∗, q̄∗}′
denotes the Hölder conjugate exponent, defined by the relation 1

max{ p̄∗,q̄∗} +
1

max{ p̄∗,q̄∗}′ = 1.

Since fn

(un+
1
n )

γ(x) ≥ 0 a.e. in Ω, by applying Lemma 2.3, we show that un ≥ 0 a.e. in Ω.

Furthermore, using Lemma 2.3 again, along with the inequality fn(x, u) ≤ n∥γ∥L∞(Ω) fn(x)
a.e. in Ω for all n ∈ N∗, we conclude that un ≤ wn a.e. in Ω, for all n ∈ N∗. This leads us to
deduce that un ∈ L∞(Ω).

Remark 3.3. If un and vn are two solutions of problem (Pn), then by a straightforward calcu-
lation using Lemma 2.3, we can demonstrate that un ≤ vn. Due to symmetry, this implies that
the solution to problem (Pn) is unique.

Lemma 3.4. The sequence {un} is increasing with respect to n, un ≥ 0 a.e in Ω, and there exists
K > 0 (independent of n ) such that

un(x) ≥ Kd(x) > 0 a.e. x ∈ Ω, (3.1)

for every n ∈ N, where d(x) := dist(x, ∂Ω).

Proof. The function fn(x) = min{ f (x) , n} provides a pointwise truncation of f (x). Addition-
ally, γ(x) > 0 in Ω, observing that

−
N

∑
i=1

∂i

(
|∂iun|pi−2∂iun

)
−

N

∑
i=1

∂i

(
|∂iun|qi−2∂iun

)
=

fn(
un +

1
n

)γ(x)
≤ fn+1(

un +
1

n+1

)γ(x)

and

−
N

∑
i=1

∂i

(
|∂iun+1|pi−2∂iun+1

)
−

N

∑
i=1

∂i

(
|∂iun+1|qi−2∂iun+1

)
=

fn+1(
un+1 +

1
n+1

)γ(x)
,

which implies

−
N

∑
i=1

∂i

(
|∂iun|pi−2∂iun

)
−

N

∑
i=1

∂i

(
|∂iun|qi−2∂iun

)
+

N

∑
i=1

∂i

(
|∂iun+1|pi−2∂iun+1

)
+

N

∑
i=1

∂i

(
|∂iun+1|qi−2∂iun+1

)
≤ fn+1(

un +
1

n+1

)γ(x)
− fn+1(

un+1 +
1

n+1

)γ(x)

≤

(un+1 +
1

n+1

)γ(x) −
(
un +

1
n+1

)γ(x)(
un +

1
n+1

)γ(x) (un+1 +
1

n+1

)γ(x)

 fn+1. (3.2)

In the last inequality, applying (un − un+1)
+ as a test function, the right-hand side shows(un+1 +

1
n+1

)γ(x) −
(
un +

1
n+1

)γ(x)(
un +

1
n+1

)γ(x) (un+1 +
1

n+1

)γ(x)

 (un − un+1)
+ fn+1 ≤ 0 a.e. in Ω. (3.3)
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Combining (3.3) and (3.2) yields

N

∑
i=1

∫
Ω

(
|∂iun|pi−2∂iun − |∂iun+1|pi−2∂iun+1

)
∂i (un − un+1)

+

+
N

∑
i=1

∫
Ω

(
|∂iun|qi−2∂iun − |∂iun+1|qi−2∂iun+1

)
∂i (un − un+1)

+ ≤ 0.

We recall the following algebraic inequality (see [41], page 210)[
|ξ1|m−2 ξ1 − |ξ2|m−2 ξ2

]
· (ξ1 − ξ2) ≥ C |ξ1 − ξ2|m ,

where ξ1, ξ2 ∈ RN , m ≥ 2, and C is a positive constant.
Since pi ≥ 2 for all i = 1, . . . , N, we apply the above inequality with ξ1 = ∂iun and

ξ2 = ∂iun+1, which yields

0 ≤
N

∑
i=1

∫
Ω
|∂i (un − un+1)

+ |pi dx +
N

∑
i=1

∫
Ω
|∂i (un − un+1)

+ |qi dx ≤ 0.

Consequently, we find that (un − un+1)
+ = 0 a.e. in Ω, which implies un ≤ un+1 for all n ∈ N.

Given that the sequence un is increasing with respect to n, it suffices to prove that inequal-
ity (3.1) holds for u1. We know that u1 is a solution of the problem (Pn) when n = 1, which
implies, in the weak sense

−
N

∑
i=1

∂i

(
|∂iu1|pi−2∂iu1

)
−

N

∑
i=1

∂i

(
|∂iu1|qi−2∂iu1

)
=

f1

(u1 + 1)γ(x)
.

According to Lemma 3.1 and hypothesis (H f ), we have

f1

(u1 + 1)γ(x)
≥ ess infΩ f1(

∥u1∥L∞(Ω) + 1
)γ− > 0.

Let λ > 0 be such that
ess infΩ f1(

∥u1∥L∞(Ω) + 1
)γ− ≥ λ. (3.4)

By applying Lemma 2.4, there exists a unique solution u ∈ X, to the following problem−
N

∑
i=1

∂i

(
|∂iu|pi−2∂iu

)
−

N

∑
i=1

∂i

(
|∂iu|qi−2∂iu

)
= λ in Ω,

u = 0 on ∂Ω,

such that
u(x) ≥ Kd(x), (3.5)

where d(x) := dist(x, ∂Ω) for x ∈ Ω, and K is a positive constant independent of u.
From (3.4), we obtain

−
N

∑
i=1

∂i

(
|∂iu1|pi−2∂iu1

)
−

N

∑
i=1

∂i

(
|∂iu1|qi−2∂iu1

)
≥ −

N

∑
i=1

∂i

(
|∂iu|pi−2∂iu

)
−

N

∑
i=1

∂i

(
|∂iu|qi−2∂iu

)
.
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Using Lemma 2.3 together with inequality (3.5), we conclude

u1 ≥ u ≥ Kd(x), a.e. in Ω. (3.6)

Due to the monotonicity of the sequence {un}n and the result in (3.6), it follows that for all
n ∈ N∗

un ≥ Kd(x), a.e. in Ω.

4 Proof of the main results

In this section, contingent on the behavior of the function γ(x), we establish the main results
of our work by analyzing the convergence of solutions to the regularized problems (Pn) and
investigating the regularity properties of these solutions.

Proof of Theorem 1.2.

When 0 < γ(x) < 1, the existence of solutions in X for problem (1.1) is established by
showing that the sequence of solutions to the approximate problem (Pn) remains bounded
in X. Leveraging the reflexivity of X and applying Lemma 3.4, we then conclude the existence
of a solution.

Lemma 4.1. Suppose that (H f ) holds, f ∈ L1(Ω), and let un be the solution of (Pn) with 0 < γ− ≤
γ(x) ≤ γ+ < 1. Then the sequence {un}n is bounded in X.

Proof. Begin by using un as a test function in (Pn). We have

N

∑
i=1

∫
Ω
|∂iun|pi dx +

N

∑
i=1

∫
Ω
|∂iun|qi dx =

∫
Ω

fnun(
un +

1
n

)γ(x)
dx

≤
∫

Ω
f u1−γ(x)

n dx

≤
∫

Ω∩{un≤1}
f dx +

∫
Ω∩{un≥1}

f undx

≤ ∥ f ∥L1(Ω) + ∥ f ∥L1(Ω)∥un∥L∞(Ω). (4.1)

Now, referencing the proof of Lemma 3.1, we can derive the following inequality:

N

∑
i=1

∫
Ω
|∂iun|pi dx +

N

∑
i=1

∫
Ω
|∂iun|qi dx ≥

∥un∥p0

W1,⃗p
0 (Ω)

NpN−1 +
∥un∥q0

W1,⃗q
0 (Ω)

NqN−1 − 2N, (4.2)

where p0 and q0 are identical in the proof of Lemma 3.1. Based on the previous inequalities
and (4.1), we obtain

∥un∥p0

W1,⃗p
0 (Ω)

+ ∥un∥q0

W1,⃗q
0 (Ω)

≤ max
{

NpN−1, NqN−1
} (

∥ f ∥L1(Ω) + ∥ f ∥L1(Ω)∥un∥L∞(Ω) + 2N
)

≤ C1( f , φ).

The fact that un ∈ L∞(Ω) implies that {un} is bounded in X.

Since the embidding X ↪→ Ls(Ω) is compact for all s ∈ [1, min{ p̄∗, q̄∗}), and given that
{un} is bounded in X by Lemma 4.1, we can conclude that, up to a subsequence, un ⇀ u
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weakly in X, where u ∈ X. Moreover, un → u strongly in Ls(Ω) for 1 ≤ s < min{ p̄∗, q̄∗}, and
un(x) → u(x) almost everywhere in Ω. Thus, for every ϕ ∈ C1

0(Ω), we have

lim
n−→∞

N

∑
i=1

∫
Ω
|∂iun|pi−2∂iun∂iϕdx +

N

∑
i=1

∫
Ω
|∂iun|qi−2∂iun∂iϕdx

=
N

∑
i=1

∫
Ω
|∂iu|pi−2∂iu∂iϕdx +

N

∑
i=1

∫
Ω
|∂iu|qi−2∂iu∂iϕdx. (4.3)

According to Lemma 3.4, we have un ≥ kd(x) a.e. in Ω, which implies that

0 ≤

∣∣∣∣∣∣ fnϕ(
un +

1
n

)γ(x)

∣∣∣∣∣∣ ≤
(
∥ϕ (kd(·))−γ+

∥L∞(Ω) + ∥ϕ (kd(·))−γ−
∥L∞(Ω)

)
f ,

for all ϕ ∈ C1
0(Ω). By using the Dominated Lebesgue’s theorem, we have

lim
n−→∞

∫
Ω

fnϕ(
un +

1
n

)γ(x)
dx =

∫
Ω

f ϕ

(u)γ(x)
dx. (4.4)

The fact that un is the solution of (Pn) allows us to conclude, using (4.3) and (4.4), that

N

∑
i=1

∫
Ω
|∂iu|pi−2∂iu∂iϕdx +

N

∑
i=1

∫
Ω
|∂iu|qi−2∂iu∂iϕdx =

∫
Ω

f ϕ

uγ(x)
dx, (4.5)

for all ϕ ∈ C1
0(Ω). This proves that (1.1) has a solution u in X. □

Proof of Theorem 1.3.
In the case γ− < 1 < γ+, we choose a test function uγ+

n to demonstrate that un is bounded
in Xloc, and also bounded in Lr(Ω) for some appropriate value of r. By utilizing the same
arguments as in the case 0 < γ(x) < 1 (Theorem 1.2), we can establish the existence and
regularity of the solutions.

Lemma 4.2. Assume that (H f ) is satisfied and that f is a nonnegative function in L1(Ω). Let un

denote the solution to (Pn) for the parameters 0 < γ− < 1 < γ+. Then, the sequence {un}n is
bounded in both Xloc and Lr(Ω), where

r =
N (γ+ − 1 + m)

(N − m)
,

with m being either p or q.

Proof. Taking uγ+

n as a test function, we obtain the following by using (Pn) and Lemma 3.4.
Given that un ∈ L∞(Ω) and γ+ − γ− > 0, we obtain

N

∑
i=1

γ+
∫

Ω
|∂iun|pi uγ+−1

n dx +
N

∑
i=1

γ+
∫

Ω
|∂iun|qi uγ+−1

n dx =
∫

Ω

fnuγ+

n(
un +

1
n

)γ(x)
dx

≤
∫

Ω
f uγ+−γ−

n dx +
∫

Ω
f dx

≤ ∥ f ∥L1(Ω)

(
1 + ∥uγ+−γ−

n ∥L∞(Ω)

)
≤ C2( f , γ, Ω). (4.6)



18 A. Hamidi, A. El Amrouss and F. Kissi

Furthermore, applying Lemma 3.4 for any compact set K ⊂ Ω and since γ+ − 1 > 0, we
conclude

N

∑
i=1

∫
Ω
|∂iun|pi uγ+−1

n dx +
N

∑
i=1

∫
Ω
|∂iun|qi uγ+−1

n dx

≥ min
K

(kd(x))γ+−1

[
N

∑
i=1

∫
K
|∂iun|pi dx +

N

∑
i=1

∫
K
|∂iun|qi dx

]
.

By the last inequalities and (4.6), we obtain

N

∑
i=1

∫
K
|∂iun|pi dx +

N

∑
i=1

∫
K
|∂iun|qi dx ≤ 1

minK(kd(x))γ+−1C2( f , γ, Ω), (4.7)

for any compact set K ⊂ Ω. We conclude that un is bounded in Xloc.
Now from (4.6), we get for every i = 1, . . . , N∫

Ω
|∂iun|mi uγ+−1

n dx ≤ C2( f , γ, Ω),

where mi being either pi or qi, which implies[∫
Ω
|∂iun|mi uγ+−1

n dx
] 1

mi
≤ C2( f , γ, Ω)

1
mi .

Hence,

N

∏
i=1

[∫
Ω
|∂iun|mi uγ+−1

n dx
] 1

mi
≤ C2( f , γ, Ω)

N
m ,

where N
m = ∑N

i=1
1

mi
.

Now, we need to use the Sobolev inequality provided in [33, Theorem 1.2], with the fol-
lowing choice of exponents:

timi = γ+ − 1, r =
N (γ+ − 1 + m)

(N − m)
and

1
r
=

γi(N − 1)− 1 + 1
mi

ti + 1
,

where γi and ti are defined as in [33, Theorem 1.2] . We deduce that[∫
Ω

ur
ndx
] N

m −1

≤ C2( f , γ, Ω)
N
m .

The fact that N > m allows us to conclude that un is bounded in Lr(Ω) with r = N(γ+−1+m)
(N−m)

.

Given that un is bounded in Xloc, we can prove the existence of a solution u in Xloc by fol-
lowing the proof of Theorem 1.2. Moreover, since un is bounded in Lr(Ω) with r = N(γ+−1+m)

(N−m)
,

it follows that u is also in Lr(Ω).

Proof of Theorem 1.4.

Finally, when γ(x) > 1, we select a test function un(φ2 + ϵγ+
) to show that un is bounded in

Xloc. By adapting the arguments from the case 0 < γ(x) < 1, we can conclude the existence
of solutions in Xloc.
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Lemma 4.3. Assume that (H f ) is satisfied and that f ∈ L1(Ω) is a nonnegative function. Let un

represent the solution to (Pn) under the condition 1 < γ− ≤ γ(x) ≤ γ+. Then, the sequence {un}n
is bounded in Xloc.

Proof. By using the test function un(φ2 + ϵγ+
) with φ ∈ C1(Ω) and supp φ ⊂ Ω, and under

the condition 0 < ϵ < 1
n for a fixed n, we can apply the properties from (Pn) and Lemma 3.4.

We obtain

N

∑
i=1

[∫
Ω
(|∂iun|pi + |∂iun|qi) (φ2 + ϵγ+

)dx + 2
∫

Ω
un φ

(
|∂iun|pi−2 + |∂iun|qi−2) ∂iun∂i φdx

]
=
∫

Ω

fnun(φ2 + ϵγ+
)(

un +
1
n

)γ(x)
dx

≤
∫

Ω

fnun φ2

(kd(x))γ(x)
dx +

∫
Ω

fnunϵγ+( 1
n

)γ+ dx

≤
∫

supp φ

f un φ2(
k min

supp φ
d(x)

)γ(x)
dx +

∫
Ω

fnundx,

where k > 0 is a constant. Using Hölder’s inequality,

N

∑
i=1

[∫
Ω
(|∂iun|pi + |∂iun|qi) (φ2 + ϵγ+

)dx + 2
∫

Ω
un φ

(
|∂iun|pi−2 + |∂iun|qi−2) ∂iun∂i φdx

]

≤
[
∥φ2∥L∞(Ω) min

{(
k min

supp φ
d(x)

)−γ−

,
(

k min
supp φ

d(x)
)−γ+}

+ 1

]
∥ f ∥L1(Ω)∥un∥L∞(Ω).

(4.8)

Let 0 < λ < ϵγ+

(∥φ∥L∞(Ω)+1)
max{qN ,pN}
min{q1,p1}−1

. By applying Young’s inequality, we get

N

∑
i=1

2
∫

supp φ
|∂iun|mi−1|∂i φ||un φ|dx

≤
N

∑
i=1

{
mi − 1

mi

∫
supp φ

λ|∂iun|mi |φ|
mi

mi−1 dx +
2mi

mi

∫
supp φ

1
λmi−1 |∂i φ|mi |un|mi dx

}
,

which implies

N

∑
i=1

2
∫

Ω
un φ|∂iun|mi−2∂iun∂i φdx

≥ −
N

∑
i=1

2
∫

supp φ
|∂iun|mi−1|∂i φ||un φ|dx

≥ −
N

∑
i=1

{∫
supp φ

λ|∂iun|mi |φ|
mi

mi−1 dx +
2mi

miλmi−1

∫
supp φ

|∂i φ|mi |un|mi dx
}

,

where mi = pi or mi = qi. By combining the last inequalities and (4.8) yields
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N

∑
i=1

∫
supp φ

|∂iun|pi

(
φ2 + ϵγ+ − λ|φ|

pi
pi−1

)
dx +

N

∑
i=1

∫
supp φ

|∂iun|qi

(
φ2 + ϵγ+ − λ|φ|

qi
qi−1

)
dx

≤
[
∥φ2∥L∞(Ω) min

{(
k min

supp φ
d(x)

)−γ−

,
(

k min
supp φ

d(x)
)−γ+}

+ 1

]
∥ f ∥L1(Ω)∥un∥L∞(Ω)

+
N

∑
i=1

2pi

piλpi−1 ∥∂i φ∥
pi
L∞(Ω)

∥un∥pi
Lpi (Ω)

+
N

∑
i=1

2qi

qiλqi−1 ∥∂i φ∥
qi
L∞(Ω)

∥un∥qi
Lqi (Ω)

≤ C3( f , φ), (4.9)

where the boundedness of the sequences ∥un∥L∞(Ω), ∥un∥Lpi (Ω), and ∥un∥Lqi (Ω) for each i =

1, . . . , N ensures the validity of the inequality.
At this point, noting that

0 < λ <
ϵγ+(

∥φ∥L∞(Ω) + 1
) max{qN ,pN}

min{q1,p1}−1

,

we can deduce that

N

∑
i=1

∫
supp φ

|∂iun|pi

(
φ2 + ϵγ+ − λ|φ|

pi
pi−1

)
dx +

N

∑
i=1

∫
supp φ

|∂iun|qi

(
φ2 + ϵγ+ − λ|φ|

qi
qi−1

)
dx

≥
N

∑
i=1

∫
supp φ

|∂iun|pi

φ2 + ϵγ+ − ϵγ+ |φ|
pi

pi−1(
∥φ∥L∞(Ω) + 1

) max{qN ,pN}
min{q1,p1}−1

 dx

+
N

∑
i=1

∫
supp φ

|∂iun|qi

φ2 + ϵγ+ − ϵγ+ |φ|
qi

qi−1(
∥φ∥L∞(Ω) + 1

) max{qN ,pN}
min{q1,p1}−1

 dx

≥
N

∑
i=1

∫
supp φ

|∂iun|pi φ2dx +
N

∑
i=1

∫
supp φ

|∂iun|qi φ2dx, (4.10)

since the inequality

|φ|
mi

mi−1(
∥φ∥L∞(Ω) + 1

) max{qN ,pN}
min{q1,p1}−1

< 1

holds for mi = qi or mi = pi for every i = 1, . . . , N, it follows that, in view of (4.9) and (4.10),
we obtain

N

∑
i=1

∫
Ω
|∂iun|pi φ2dx +

N

∑
i=1

∫
Ω
|∂iun|qi φ2dx ≤ C3( f , φ).

Thus, the sequence {un}n is bounded in Xloc as desired.

Minor adjustments in the proof of Theorem 1.2 allow us to prove the existence of u in Xloc.
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Proof of Theorem 1.5.

By using (u − δ)+ as a test function in problem (1.1), we demonstrate that for all γ(x) > 0 and
f ∈ Lr(Ω) for some suitable r, the solution to problem (1.1) belongs to L∞(Ω).

Let u be the solution for problem (1.1). Taking (u − δ)+ as a test function in (1.1) with
δ > 0, we obtain

N

∑
i=1

∫
Ω
|∂iu|pi−2∂iu∂i(u − δ)+dx +

N

∑
i=1

∫
Ω
|∂iu|qi−2∂iu∂i(u − δ)+dx =

∫
Ω

f (u − δ)+

(u)γ(x)
dx,

from which it follows that

N

∑
i=1

∫
Ω
|∂i(u − δ)+|pi dx +

N

∑
i=1

∫
Ω
|∂i(u − δ)+|qi dx ≤

∫
Ω

f (u − δ)+ (kd(x))−γ(x) dx,

thus, we obtain

N

∑
i=1

∫
Ω
|∂i(u − δ)+|pi dx ≤

∫
Ω

f (u − δ)+ (kd(x))−γ(x) dx,

which leads to the following inequality(∫
Ω
|∂i(u − δ)+|pi dx

) 1
pi
≤
(∫

Ω
f (u − δ)+ (kd(x))−γ(x) dx

) 1
pi

. (4.11)

Additionally, we employ the following Sobolev-type inequality, as shown in [13], there exists
a constant C > 0, dependent only on the domain Ω, such that for any s ∈ [1, p̄∗] :

∥ξ∥Ls(Ω) ≤ C
N

∏
i=1

∥∂iξ∥
1
N

Lpi(Ω) , (4.12)

where ξ ∈ W1,⃗p
0 (Ω), and pi ≥ 2 for each i = 1, 2, . . . , N. From (4.11)–(4.12) and noting that

min{ p̄∗, q̄∗} ≤ p̄∗, we obtain

∥(u − δ)+∥Lmin{ p̄∗ ,q̄∗}(Ω) ≤ C0

N

∏
i=1

(∫
Ω

f (u − δ)+ (kd(x))−γ(x) dx
) 1

Npi
,

≤ C0

(∫
Ω

f (u − δ)+ (kd(x))−γ(x) dx
) 1

p̄

.

Applying Hölder’s inequality, we have

∥(u − δ)+∥Lmin{ p̄∗ ,q̄∗}(Ω)

≤ C0

([∫
Λδ

| f |min{ p̄∗,q̄∗}′ (kd(x))−γ(x) dx
] 1

min{ p̄∗ ,q̄∗}′

∥(u − δ)+∥Lmin{ p̄∗ ,q̄∗}(Ω)

) 1
p̄

≤ C0

([∫
Λδ

| f |min{ p̄∗,q̄∗}′dx
] 1

min{ p̄∗ ,q̄∗}′

∥ (kd(·))−γ(·) ∥
1

min{ p̄∗ ,q̄∗}′

L∞(Λδ)
∥(u − δ)+∥Lmin{ p̄∗ ,q̄∗}(Ω)

) 1
p̄

,

with Λδ = {x ∈ Ω : u(x) > δ}.
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Now, applying Young’s inequality to the right-hand side of the last inequality, let ϵ > 0,
we have

∥(u − δ)+∥Lmin{ p̄∗ ,q̄∗}(Ω)

≤ Cϵ∥ (kd(·))−γ(·) ∥
p̄′

p̄ min{ p̄∗ ,q̄∗}′

L∞(Λδ)

[∫
Λδ

| f |min{ p̄∗,q̄∗}′dx
] 1

min{ p̄∗ ,q̄∗}′ ×
p̄′
p̄

+
ϵ

p̄
∥(u − δ)+∥Lmin{ p̄∗ ,q̄∗}(Ω),

which implies(
1 − ϵ

p̄

)
∥(u − δ)+∥Lmin{ p̄∗ ,q̄∗}(Ω) ≤C1∥ (kd(·))−γ(·) ∥

p̄′
p̄ min{ p̄∗ ,q̄∗}′

L∞(Λδ)

[∫
Λδ

| f |min{ p̄∗,q̄∗}′dx
] 1

min{ p̄∗ ,q̄∗}′ ×
p̄′
p̄

.

By choosing ϵ such that 1 − ϵ
p̄ > 0, we can infer that

∥(u − δ)+∥Lmin{ p̄∗ ,q̄∗}(Ω) ≤C2∥ (kd(·))−γ(·) ∥
p̄′

p̄ min{ p̄∗ ,q̄∗}′

L∞(Λδ)

[∫
Λδ

| f |min{ p̄∗,q̄∗}′dx
] 1

min{ p̄∗ ,q̄∗}′ ×
1

p̄−1

.

Applying Hölder’s inequality with exponents r
min{ p̄∗,q̄∗}′ and

(
r

min{ p̄∗,q̄∗}′
)′

yields

∥(u − δ)+∥Lmin{ p̄∗ ,q̄∗}(Ω)

≤ C3∥ (kd(·))−γ(·) ∥
p̄′

p̄ min{ p̄∗ ,q̄∗}′

L∞(Λδ)

[
∥ f ∥

min{ p̄∗ ,q̄∗}′
r

Lr(Ω)
meas (Λδ)

1−min{ p̄∗ ,q̄∗}′
r

] 1
min{ p̄∗ ,q̄∗}′ ×

1
p̄−1

.

Utilizing the fact that f ∈ Lr(Ω), where r ≥ min{ p̄∗,q̄∗}
min{ p̄∗,q̄∗}−max{ p̄,q̄} , we have

∥(u − δ)+∥Lmin{ p̄∗ ,q̄∗}(Ω) ≤ C4∥ (kd(·))−γ(·) ∥
p̄′

p̄ min{ p̄∗ ,q̄∗}′

L∞(Λδ)
meas (Λδ)

[
1−min{ p̄∗ ,q̄∗}′

r

]
1

min{ p̄∗ ,q̄∗}′ ×
1

p̄−1 . (4.13)

Again, by Hölder’s inequality, the following inequality holds∫
Ω
(u − δ)+dx ≤ ∥(u − δ)+∥Lmin{ p̄∗ ,q̄∗}(Ω) meas(Λδ)

1− 1
min{ p̄∗ ,q̄∗} . (4.14)

Thus, from (4.13) and (4.14), we get∫
Ω
(u − δ)+dx

≤ C5∥ (kd(·))−γ(·) ∥
p̄′

p̄ min{ p̄∗ ,q̄∗}′

L∞(Λδ)
meas (Λδ)

[
1−min{ p̄∗ ,q̄∗}′

r

]
1

min{ p̄∗ ,q̄∗}′ ×
1

p̄−1 meas(Λδ)
1− 1

min{ p̄∗ ,q̄∗} ,

≤ C5∥ (kd(·))−γ(·) ∥
p̄′

p̄ min{ p̄∗ ,q̄∗}′

L∞(Λδ)
meas(Λδ)

1− 1
min{ p̄∗ ,q̄∗} +

[
1−min{ p̄∗ ,q̄∗}′

r

]
1

min{ p̄∗ ,q̄∗}′ ×
1

p̄−1 . (4.15)

Defining τ(δ) =
∫

Ω(u − δ)+dx, it follows straightforwardly that τ′(δ) = −meas(Λδ), where
Λδ = {x ∈ Ω : u(x) > δ} (see [26]). Thus, the previous inequality becomes

τ(δ)

1

1− 1
min{ p̄∗ ,q̄∗} +

[
1− min{ p̄∗ ,q̄∗}′

r

]
1

min{ p̄∗ ,q̄∗}′ ×
1

p̄−1 ≤ −C6τ′(δ). (4.16)

Let us define the parameter α as follows

α =
1

1 − 1
min{ p̄∗,q̄∗} +

[
1 − min{ p̄∗,q̄∗}′

r

]
1

min{ p̄∗,q̄∗}′ ×
1

p̄−1

.
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Using this expression in combination with equation (4.16), we can further deduce

1 ≤ −C6τ′(δ)τ(δ)−α =
−C6

1 − α

(
τ(δ)1−α

)′
.

Observe that assumption r ≥ min{ p̄∗,q̄∗}
min{ p̄∗,q̄∗}−max{ p̄,q̄} implies 1 − α > 0. Integrating the last

inequality from 0 to δ, we obtain

δ ≤ −C6

(
τ(δ)1−α − τ(0)1−α

)
,

which leads to

C6τ(δ)1−α ≤ −δ + C6∥u∥1−α
L1(Ω)

.

From this inequality and the fact that τ(δ) is a non-negative and decreasing, there exists a δ0

such that τ(δ0) = 0. Therefore, ∥u∥L∞(Ω) ≤ Cδ0 , which implies u ∈ L∞(Ω). □

5 Concluding remarks and future directions

As kindly suggested by one of the referees of this paper, we intend to further develop and
extend the analysis presented here to singular double anisotropic variable exponent problems
of the form:

−
N

∑
i=1

∂i

(
|∂iu|pi(x)−2∂iu

)
−

N

∑
i=1

∂i

(
|∂iu|qi(x)−2∂iu

)
=

f (x)
uγ(x)

in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(5.1)

where Ω ⊂ RN is a rectangular domain with dimension N ≥ 3, γ(x) is a positive function in
C(Ω), and f (x) belongs to Lr(Ω) for some r ≥ 1.

The vector functions p⃗, q⃗ : Ω̄ → RN are defined as

p⃗(x) = (p1(x), . . . , pN(x)) , q⃗(x) = (q1(x), . . . , qN(x)) ,

where pi and qi belong to C+(Ω) and satisfy certain conditions.
The energy functional associated with this model contains the unbalanced variational in-

tegral

u 7−→
N

∑
i=1

∫
Ω

1
pi(x)

|∂iu|pi(x) dx +
N

∑
i=1

∫
Ω

1
qi(x)

|∂iu|qi(x) dx. (5.2)

This functional provides a sharper version of the classical energy

u 7−→
N

∑
i=1

1
pi

∫
Ω
|∂iu|pi dx +

N

∑
i=1

1
qi

∫
Ω
|∂iu|qi dx.

These problems allow for a more precise description of heterogeneous and anisotropic
physical phenomena in fields such as nonlinear elasticity, material science, and homogeniza-
tion. They are particularly useful for modeling composite materials with spatially varying
properties, where the material behavior depends on both location and direction.
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In nonlinear elasticity and material science, composite materials with locally varying hard-
ening exponents p⃗(x) and q⃗(x) can be effectively characterized using the energy functional in
(5.2). Furthermore, such problems have important applications in elasticity, homogenization,
the modeling of strongly anisotropic materials, the Lavrentiev phenomenon, and other related
areas.

Inspired by the seminal work of Chems Eddine and Repovš [17], we observe that the main
results in this study can be extended to more general anisotropic problems involving variable
exponents as in (5.1). Specifically, we extend the regularity of solutions to anisotropic Hölder

continuous function spaces C0,
−→
β (·)(Ω) over rectangular domains. In their work, Chems Ed-

dine and Repovš introduced a novel framework for embedding anisotropic variable exponent
Sobolev spaces into anisotropic variable exponent Hölder continuous function spaces in rect-
angular domains. Their results generalize classical Sobolev embedding theorems by incorpo-
rating anisotropic settings with variable exponents, providing deeper insights into function
regularity in different spatial directions. Under log-Hölder continuity conditions on the vari-
able exponents −→p (·).

A promising new research direction focuses on anisotropic operators with variable expo-
nents and singular reactions. Within this framework, we aim to extend the qualitative analysis
conducted in this paper to singular nonlinear boundary value problems with variable expo-
nents, modeled by the following system:



−
N

∑
i=1

∂i

(
|∂iu|pi(x)−2∂iu

)
=

f (x)
uγ(x)

+ Fu(x, u, v) in Ω,

−
N

∑
i=1

∂i

(
|∂iv|qi(x)−2∂iv

)
=

g(x)
vβ(x)

+ Fv(x, u, v) in Ω,

u, v > 0 in Ω,

u = v = 0 on ∂Ω,

(5.3)

This anisotropic system, which features unbalanced growth, was introduced by Figueiredo
and Silva [22], where the vectors p⃗ and q⃗ are independent of x.

We conclude by noting that a key characteristic of nonlinear problems with variable ex-
ponents is the possibility of a subcritical-critical-supercritical multiple regime. A particularly
intriguing open problem involves analyzing the singular case of the anisotropic system de-
scribed in problem (5.3) within this multiple regime. A closely related and highly intriguing
research direction involves anisotropic systems with variable exponent operators and singular
reactions. These systems exhibit complex behaviors, particularly in the presence of unbal-
anced growth conditions and multiple regime transitions. Exploring their qualitative proper-
ties, existence results, and regularity aspects presents significant mathematical challenges and
potential applications in nonlinear elasticity, material science, and phase transition models.
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