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Abstract. This note presents some new criteria for the oscillation of all solutions of the
second-order hybrid type delay differential equation

(a(t)x′(t))′ − p1(t)x(t) + p2(t)xα(σ(t)) = 0,

by making use of a positive solution of the associated linear differential equation

(a(t)u′(t))′ − p1(t)u(t) = 0.

The results obtained are new and are illustrated by three examples.
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1 Introduction

Consider the second-order hybrid type delay differential equation of the form

(a(t)x′(t))′ − q1(t)x(t) + q2(t)xα(σ(t)) = 0, t ≥ t0, (E)

where we assume throughout that the following conditions hold:

(H1) a ∈ C1([t0, ∞), (0, ∞)), q1, q2 ∈ C([t0, ∞), (0, ∞)), and α is a ratio of odd positive integers;

(H2) σ ∈ C1([t0, ∞), R) with σ′(t) ≥ 0, σ(t) ≤ t, and σ(t) → ∞ as t → ∞.
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By a proper solution of (E), we mean a function x : [Tx, ∞) → R that satisfies (E) for all
sufficiently large t and sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx. We always assume that
equation (E) possesses proper solutions. A solution of (E) is said to be oscillatory if it has
arbitrarily large zeros, and otherwise it is called nonoscillatory. Equation (E) is said to be
oscillatory if all its solutions are oscillatory.

Note that if q1 = 0, then (E) reduces to the second order delay differential equation

(a(t)x′(t))′ + q2(t)xα(σ(t)) = 0, t ≥ t0, (E1)

and if q2 = 0, then we obtain the linear differential equation without a delay

(a(t)x′(t))′ − q1(t)x(t) = 0, t ≥ t0. (E2)

Therefore, we may refer to equation (E) as a “hybrid type” differential equation.
Oscillation properties of solutions of second-order nonlinear delay differential equations

were first studied in [9]. Since then, there has been a large number of papers regarding the
oscillation of delay differential equations of different forms; see, for example, the monographs
[1, 2, 10], the recent papers [3, 5, 7, 8, 13, 17], and the references cited therein. This is due to the
fact that oscillation and delay/advanced phenomena appear in different models arising from
real world applications.

Recently in [8], the authors studied oscillation properties of the trinomial differential equa-
tion

x′′(t)− q1(t)x(τ(t))− q2(t)x(σ(t)) = 0, t ≥ t0, (E3)

where τ(t) ≥ t and σ(t) ≤ t for all t ≥ t0. Moreover, in [5,17], the authors presented oscillation
criteria for equations of the form

(a(t)x′(t))′ + q1(t)x(t) + q2(t)x(σ(t)) = 0, t ≥ t0, (E4)

in case (E4) is in either canonical or noncanonical form. Note that if a(t) > 0, q1(t) > 0, and
q2(t) > 0 for all t ≥ t0, then for any positive solution x(t) of (E3) or (E4), the sign of the
second-order derivative becomes

x′′(t) > 0 or (a(t)x′(t))′ < 0, for t ≥ t0,

and from this it can easily be seen that x′(t) > 0 or x′(t) < 0 eventually. However, equation
(E) includes both of the binomial equations (E1) and (E2) as special cases. Properties of both
of these equations have been studied by several authors; see, for example, the monographs
[1, 2, 15] and the references contained therein for details.

It is clear that the solutions spaces of equations (E1) and (E2) are completely different. If
we denote by S the set of all nonoscillatory solutions of a considered equation, then for (E1),
the set S becomes

S = S1 ∪ S0

where positive solutions satisfy

x(t) ∈ S1 if and only if x′(t) > 0 and (a(t)x′(t))′ < 0,

and
x(t) ∈ S0 if and only if x′(t) < 0 and (a(t)x′(t))′ < 0.
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On the other hand, for (E2), the set S has the structure

S = S∗
0 ∪ S∗

2

where positive solutions satisfy

x(t) ∈ S∗
0 if and only if x′(t) < 0 and (a(t)x′(t))′ > 0,

and
x(t) ∈ S∗

2 if and only if x′(t) > 0 and (a(t)x′(t))′ > 0.

Consequently, the structure of the set of nonoscillatory solutions of the hybrid equation (E)
with positive and negative parts is unclear.

A method often employed in the study of the oscillation of solutions of trinomial differen-
tial equations is to omit one term. If, we omit the negative part of (E), then we are led to the
differential inequality

{(a(t)x′(t))′ + q2(t)xα(σ(t))} sgn x(t) ≥ 0. (E5)

However, it is well known that properties of the corresponding differential equation (E1) are
connected to solutions of a differential inequality in the opposite direction. Similarly, omitting
the positive term in (E) gives the differential inequality

{(a(t)x′(t))′ − q1(t)x(t)} sgn x(t) ≤ 0, (E6)

which is again opposite to the one that we would need. There are only a limited number
of papers for equations like (E) with positive and negative parts. In this paper, we use a
different approach that overcomes those difficulties caused by the presence of both negative
and positive terms in (E). We then use comparison methods to obtain criteria for the oscillation
of all solutions of (E). Three examples are provided to illustrate the importance and novelty
of our main results.

2 Main results

In this section, we first transform the hybrid equation (E) into the form of a binomial equa-
tion, and then use a positive solution of the related auxiliary second-order linear ordinary
differential equation

(a(t)u′(t))′ = q1(t)u(t), t ≥ t0. (2.1)

Lemma 2.1. The differential equation (2.1) has a positive nonincreasing solution on [t0, ∞).

Proof. The proof is similar to Theorem 2.46 of [15] and so the details are omitted.

Next, using a positive solution u(t) of (2.1), we can obtain the following result.

Lemma 2.2. Let u(t) be a positive decreasing solution of (2.1) on [t0, ∞). Then (E) can be written in
the form (

a(t)u2(t)
(

x(t)
u(t)

)′
)′

+ u(t)q2(t)xα(σ(t)) = 0, t ≥ t0. (E7)
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Proof. By a direct calculation and using (2.1), we see that

1
u(t)

(
a(t)u2(t)

(
x(t)
u(t)

)′
)′

=
1

u(t)
(
a(t)u(t)x′(t)− a(t)u′(t)x(t)

)′
=

1
u(t)

(
u(t)(a(t)x′(t))′ − (a(t)u′(t))′x(t)

)
= (a(t)x′(t))′ − (a(t)u′(t))′x(t)

u(t)
= (a(t)x′(t))′ − q1(t)x(t). (2.2)

Substituting (2.2) into (E) yields the desired result, and completes the proof.

For the sake of convenience, we define the functions:

b(t) = a(t)u2(t), B(t) =
∫ t

t∗

1
a(s)u2(s)

ds,

Q(t) = u(t)q2(t)uα(σ(t)), and z(t) =
x(t)
u(t)

for t ≥ t∗ ≥ t0. Employing the oscillation-preserving transformation x(t) = u(t)z(t), where u
is a positive solution of the differential equation (2.1), we can obtain the following consequence
of Lemma 2.2.

Theorem 2.3. Let u(t) be a positive decreasing solution of (2.1). Then (E) is oscillatory if and only if
the differential equation

(b(t)z′(t))′ + Q(t)zα(σ(t)) = 0, t ≥ t0, (2.3)

is oscillatory.

For convenience in what follows, we will assume that (2.3) is in canonical form, that is,

B(t) → ∞ as t → ∞. (2.4)

Remark 2.4. If B(t) < ∞ so that equation (2.3) is in noncanonical form, define

Ω(t) =
∫ ∞

t

1
b(s)

ds, b1(t) = b(t)Ω2(t), µ(t) = z(t)/Ω(t),

and
Q1(t) = Ω(t)Q(t)Ωα(σ(t)).

Then equation (2.3) can be written in the canonical form as

(b1(t)µ′(t))′ + Q1(t)µα(σ(t)) = 0, t ≥ t0. (2.5)

The oscillation of (2.5) can then be deduced as for equation (2.3).

Theorem 2.5. Let (2.4) hold and u(t) be a positive decreasing solution of (2.1). Assume that z(t) is
an eventually positive (nonoscillatory) solution of (2.3). Then,

z′(t) > 0 and b(t)z′(t))′ ≤ 0 (2.6)

for all t ≥ t1 ≥ t0.
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Proof. Let z(t) be an eventually positive solution of (2.3), say z(t) > 0 and z(σ(t)) > 0 for
t ≥ t1 for some t1 ≥ t0. Then from (2.3), we see that (b(t)z′(t))′ ≤ 0 and so b(t)z′(t) > 0 or
b(t)z′(t) < 0 for all t ≥ t1.

If b(t)z′(t) < 0 for t ≥ t1, then

b(t)z′(t) ≤ b(t1)z′(t1) < 0.

Dividing the last inequality by b(t) and then integrating from t1 to t gives

z(t) ≤ z(t1) + b(t1)z′(t1)
∫ t

t1

1
b(s)

ds → −∞

as t → ∞ by (2.4). This contradicts the positivity of z(t) and proves the theorem.

Theorem 2.6. Let (2.4) hold and u be a positive decreasing solution of (2.1). If∫ ∞

t1

Q(t)dt = ∞, (2.7)

then equation (E) is oscillatory.

Proof. Assume, to the contrary, that x(t) is an eventually positive solution of (E), say x(t) > 0
and x(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. Then, by our transformation, z(t) = x(t)

u(t) is an
eventually positive solution of (2.3), say z(t) > 0 and z(σ(t)) > 0 for all t ≥ t1. By Theorem
2.5, z(t) is increasing, so by (H1), we have z(σ(t)) ≥ z(σ(t1)) for t ≥ t1. Using this in (2.3)
and then integrating the resulting inequality from t1 to t yields

zα(σ(t1))
∫ t

t1

Q(s)ds ≤ b(t1)z′(t1)− b(t)z′(t) ≤ b(t1)z′(t1)

since b(t)z′(t) is nonnegative. Letting t → ∞ in the last inequality contradicts (2.7). This
completes the proof.

Remark 2.7. The above theorem is independent of α and the delay argument, so it holds for
linear, super-linear, and sublinear equations as well as for delay or advanced type equations.

Next, we give two results for the oscillation of equation (E) without condition (2.7) holding.

Theorem 2.8. Let (2.4) hold and u be a positive decreasing solution of (2.1). If α = 1 and

lim inf
t→∞

B(σ(t))
∫ ∞

t
Q(s)ds >

1
4

, (2.8)

then equation (E) is oscillatory.

Proof. Assume that x(t) is an eventually positive solution of (E), say x(t) > 0 and x(σ(t)) > 0
for all t ≥ t1 for some t1 ≥ t0. Then, proceeding as in the proof of Theorem 2.6, we have
z(t) > 0, z(σ(t)) > 0, and condition (2.6) holds for all t ≥ t1. Using Corollary 2 in [7], we see
that condition (2.8) implies that z(t) is oscillatory. This contradiction completes the proof.

Theorem 2.9. Let (2.4) hold and u be a positive decreasing solution of (2.1). If the first order delay
differential equation

w′(t) + Q(t)Bα(σ(t))wα(σ(t)) = 0 (2.9)

is oscillatory, then equation (E) is oscillatory.
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Proof. Assume that x(t) is an eventually positive solution of (E), say x(t) > 0 and x(σ(t)) > 0
for t ≥ t1 ≥ t0. Proceeding as in the proof of Theorem 2.6, we see that z(t) is a positive
solution of (2.3) and (2.6) holds for t ≥ t1. Using the monotonicity of b(t)z′(t) > 0, we have

z(t) ≥
∫ t

t1

b(s)z′(s)
b(s)

ds ≥ B(t)b(t)z′(t).

Using this in (2.3) yields

(b(t)z′(t))′ + Q(t)Bα(σ(t))(b(σ(t))z′(σ(t)))α ≤ 0.

Let w(t) = b(t)z′(t) > 0; then w(t) is a positive solution of the inequality

w′(t) + Q(t)Bα(σ(t))wα(σ(t)) ≤ 0.

By [14, Theorem 1], equation (2.9) also has a positive solution, which is a contradiction. This
completes the proof.

Next, we present some explicit oscillation criteria for equation (E) with the help of the
results given in [10] and [16] for α = 1, 0 < α < 1, and α > 1.

Corollary 2.10. Let (2.4) hold and u be a positive decreasing solution of (2.1). If

lim inf
t→∞

∫ t

σ(t)
Q(s)B(σ(s))ds >

1
e

for α = 1, (2.10)

or ∫ ∞

t0

Q(t)Bα(σ(t))dt = ∞ for 0 < α < 1, (2.11)

then equation (E) is oscillatory.

Proof. Based on results in [10] (see [10, Theorem 2.1.1] and [10, Theorem 3.6.3], we see that
conditions (2.10) and (2.11), respectively, imply equation (2.3) is oscillatory. The conclusion
then follows from Theorem 2.3.

Corollary 2.11. Let α > 1, (2.4) hold, and u be a positive decreasing solution of (2.1). Then every
solution of (E) is oscillatory if any of the following conditions hold:

(i) σ(t) = t − τ, τ > 0, and there exists λ > τ−1 ln α such that

lim inf
t→∞

[
Q(t)Bα(σ(t)) exp(−eλt)

]
> 0; (2.12)

(ii) σ(t) = θt, 0 < θ < 1 and there exists λ > − ln α/ ln θ such that

lim inf
t→∞

[
Q(t)Bα(σ(t)) exp(−tλ)

]
> 0; (2.13)

(iii) σ(t) = tθ , 0 < θ < 1 and there exists λ > − ln α/ ln θ such that

lim inf
t→∞

[
Q(t)Bα(σ(t)) exp(−(ln t)λ)

]
> 0. (2.14)

Proof. The proof follows from Theorem 3(i), Theorem 4(i), and Theorem 5(i) in [16], respec-
tively, along with Theorem 2.9 above. This proves the corollary.
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Before presenting our final theorem, we define the constants

β∗ = lim
t→∞

b(t)B(σ(t))B(t)Q(t) and λ∗ = lim
t→∞

B(t)
B(σ(t))

.

Theorem 2.12. Let (2.4) hold and u be a positive decreasing solution of (2.1). If α = 1 and

β∗ >

0, if λ∗ = ∞,
d+2−

√
(d+2)2−4d
2d , if λ∗ < ∞,

(2.15)

where d = ln λ∗, then equation (E) is oscillatory.

Proof. From Corollary 2 and Theorem 4 in [11], we see that equation (2.3) is oscillatory. The
conclusion then follows from Theorem 2.3.

3 Examples

In this section, we present three examples to show the importance and novelty of the main
results.

Example 3.1. Consider the second order hybrid differential equation(
t3/2x′(t)

)′
− 1

2
√

t
x(t) +

q0√
t
x(λt) = 0, t ≥ 1, (3.1)

where q0 > 0, and λ ∈ (0, 1). Here we have a(t) = t3/2, q1(t) = 1
2
√

t
, q2(t) =

q0√
t
, α = 1, and

σ(t) = λt.
The auxiliary equation (2.1) becomes

(t3/2u′(t))′ =
1

2
√

t
u(t), t ≥ 1

which has the positive decreasing solution u(t) = 1/t. Thus, b(t) = t−1/2, B(t) = 2
3

(
t3/2 − 1

)
,

Q(t) = q0/(λt5/2), and z(t) = tx(t).
The transformed binomial form (2.3) of (3.1) is(

1√
t
z′(t)

)′
+

q0

λt5/2 z(λt) = 0, t ≥ 1. (3.2)

Condition (2.4) clearly holds and condition (2.8) becomes

lim inf
t→∞

2
3

(
λ3/2t3/2 − 1

) ∫ ∞

t

q0

λs5/2 ds >
4
9

√
λq0,

so it holds if q0 > 9
16
√

λ
. Hence, by Theorem 2.8, equation (3.1) is oscillatory if q0 > 9

16
√

λ
.

In view of condition (2.10), we see that if

q0 >
3

2e
√

λ ln 1
λ

,

then equation (3.1) is oscillatory.
For λ = 1/4, the condition (2.8) becomes q0 > 9/8 and the condition (2.11) becomes

q0 > 0.796107. Thus, we see that condition (2.11) is better than (2.8).
Also note that equation (3.1) is of the noncanonical type (since

∫ ∞
t0

1
a(s)ds < ∞) whereas

the transformed equation (3.2) is in canonical form. Thus, our results apply to noncanonical
equations as well as those in canonical form.
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Example 3.2. Consider the second order sub-linear hybrid delay differential equation

x′′(t)− x(t) + e
2t
3 x

1
3 (t − π) = 0, t ≥ π. (3.3)

We have a(t) = 1, q1(t) = 1, q2(t) = e
2t
3 , α = 1

3 , and σ(t) = t − π, so the auxiliary equation
is

u′′(t)− u(t) = 0

for which u(t) = e−t is a positive decreasing solution. The transformed equation is(
e−2tz′(t)

)′
+ e

−2t
3 + π

3 z
1
3 (t − π) = 0, t ≥ π.

Simple calculations show that B(t) ≈ e2t

2 , Q(t) = e
−2t

3 + π
3 and condition (2.11) becomes

∫ ∞

π

e
−2t

3 + π
3 e

2t
3

2
1
3

dt = ∞,

so it holds. Therefore, by Corollary 2.10, equation (3.3) is oscillatory.

Example 3.3. Consider the second order super-linear hybrid delay differential equation

x′′(t)− x(t) + et2+2tx3(t/2) = 0, t ≥ 1. (3.4)

Now a(t) = 1, q1(t) = 1, q2(t) = et2+2t, α = 3, and σ(t) = t/2. The auxiliary equation is

u′′(t)− u(t) = 0

and u(t) = e−t is a positive decreasing solution. The transformed equation is(
e−2tz′(t)

)′
+ et2−2tz3(t/2) = 0, t ≥ 1.

Additional calculations give b(t) = e−2t, B(t) ≈ e2t

2 , and Q(t) = et2−t/2. Choosing λ = 2 we
see that 2 > ln 3/ ln 2. The condition (2.13) becomes

lim inf
t→∞

[
1
8

et2−t/2
e3te−t2

]
= ∞ > 0,

so it holds. Therefore, by Corollary 2.11(ii), equation (3.4) is oscillatory.

4 Conclusion

In this paper, we studied the oscillatory properties of hybrid delay differential equations of
second-order. This is achieved by transforming the equation under consideration to a binomial
type equation. Then by applying the comparison method and integral averaging technique,
we established conditions for the oscillation of all solutions. None of the results reported in
[5, 8, 17] are applicable to Examples 3.1 or 3.3 since these equations contain both positive and
negative parts. Thus, the oscillation results presented here are a significant new contribution
to the theory of oscillation of trinomial delay differential equations. In a future work, we plan
to extend the results in this paper to equations of the form

(a(t)x′(t))′ + p1(t)x(t)− p2(t)xα(σ(t)) = 0,

where σ(t) ≥ t.
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