

Platform Economy: Spectral Images, Ecological Constraints, and Alternative Infrastructures

Zoltán Dragon

This paper proposes the concept of platform economy as an extension of Peter Szendy's theorization of the image as a speculative unit of circulation, rearticulated for the contemporary regime of platform capitalism and its ecological, algorithmic, and geopolitical entanglements. While images have historically been theorized in terms of aesthetics and semiotics, this study reframes them as spectral entities: persistently archived, algorithmically reanimated, and materially sustained by energy-intensive infrastructures. Drawing on critical theories of photography, media, and deconstruction, particularly the work of Jacques Derrida on trace and spectrality, the paper traces how digital images accumulate not only symbolic but also environmental and geopolitical weight. The analysis demonstrates that today's images circulate through a system of spectral governance characterized by latency, infrastructural opacity, and algorithmic anticipation, making visibility itself an ecological and political event. Furthermore, it explores how platforms reorganize spatial and territorial logics, using Edward Soja's concept of Thirdspace to map the contradictions of cloud infrastructures. The study concludes by advocating for a post-platform economy: an ethical and ecological rethinking of visibility, proposing experimental infrastructures and visual practices that resist the extractive logic of perpetual circulation.

Keywords: trace, spectrality, platform capitalism, iconomy

1. Introduction

According to the statistics as of May 2025, this year humanity will take approximately 2.1 trillion photos, which, in comparison to the 1.9 trillion photos taken in 2024 worldwide, is a significant rise. Globally, citizens in possession of any kind of photographic device capture approximately 5.3 billion photos per day, which amounts to a tantalizing 61,400 images per second. To the present day, there are approximately 14.3 trillion photos in existence, stored somewhere on the internet, most of them in some computational cloud system. Smartphones account for 94% of all photos taken in 2024. Google Image Search indexes an estimated 136 billion images. 14 billion images are shared daily on social media, with WhatsApp leading at 6.9 billion (Broz 2025). This is an unthinkable amount of images in circulation or in interpassive mode (I am referring here to Žižek's term that he uses to describe the phenomenon when one has too many recorded or downloaded TV shows, programs, films to watch: the machine watches it for us (Žižek 1997, p. 112) which might be rightfully called an image overload. But what is the backbone of this phenomenon in terms of economy and ethics?

What I wish to explore in the present paper is the concept of *platform iconomy*, which I offer as an attempt to extend Szendy's theorization of the image as a site of speculative circulation (Szendy 2019) into the contemporary condition of algorithmic, infrastructural, and ecological entanglement. Building on Szendy's notion of the iconomy (the speculative economy of the image as commodity, credit, and promissory sign), I

propose that today's digital images operate not only through circulation, but also through a logic of persistence and recursivity that ties them to planetary systems of energy consumption, data extraction, and spectral reappearance. I claim that in the current regime of platform capitalism, images do not just circulate: they haunt, linger, and accumulate in ways that are simultaneously economic, spectral, and ecologically consequential.

In order to reconsider the present scopic regime in the digital world, first, I revisit Szendy's formulation of the economy, situating it within broader debates on image economies and financial speculation, and reframe it in light of contemporary platform infrastructures, which Srnicek (2016) identifies as the dominant architecture of late capitalism. Second, I explore how images in the digital age are not simply transient or immaterial, but are sustained by energy-intensive infrastructures whose ecological costs remain largely invisible. Drawing on the work of Crawford (2021) and others, I consider how the image becomes entangled in a spectral economy, where presence is deferred, latency is infrastructural, and visibility becomes ecologically taxing. Third, I turn to Derrida's concepts of the trace, *l'avenir*, and spectrality to develop a hauntological reading of the persistence of the image, emphasizing how the archive of digital images operates through logics of deferred return and algorithmic reanimation. Here, I show how the ontology of the image has become inseparable from its potential to reappear within platform dynamics, monetization systems, and attention economies. It is also here that I engage with Soja's concept of the *Thirdspace* that ties philosophical and economic, abstract, theoretical and ecological discourses together. Finally, I propose the term spectral governance to name the mode of control exercised through platforms: a form of power that operates through latency, invisibility, and deferred presence, enforced by planetary-scale computation and outsourced labor.

In my reconceptualization, platform economy is not simply an economic model but a spectral regime: it is a system in which images govern and, in turn, are governed not simply by presence, but by their future potentiality, their energetic debt, and their infrastructural haunting. In this paper I argue that we need to rethink the politics of the image not only in terms of semiotics or aesthetics, but also in relation to material ecology, global logistics, and posthuman temporality. To engage critically with the image today is to confront its spectral weight: its persistence across time, its entanglement with planetary systems, and its complicity in forms of slow violence that exceed the visible frame.

2. Toward an Ecology of Economy: Images and Their Afterlives

In *For an Ecology of Images*, Szendy extends his earlier reflections on the image as a unit of circulation and exchange by situating it within the broader ecological systems through which it operates (Szendy 2025). Here, Szendy is no longer solely concerned with visibility and valuation and asks us to consider how images "occupy a volume" (Szendy 2025, p. 21), arguing that images demand space, generate thermal and computational emissions, and inscribe themselves materially across perceptual, affective, and planetary environments. In this account, the image becomes not merely a representational surface but a volumetric and ecological agent, embedded in infrastructural entanglements and energetic flows.

With this move Szendy does not abandon his earlier theorization of economy but rather supplements it. The logic of visibility, financialization, and speculative circulation

that were central concepts in his previous book, *The Supermarket of the Visible*, remains in force, while now being tethered to a spatial and ecological realism (Szendy 2019). Szendy's shift resonates obliquely with Benjamin's account of the aura and the reproducibility of the work of art. In Benjamin's view, the aura of the artwork dissipates in the age of mechanical reproduction, as the image detaches from its unique time-space context and enters the realm of circulation (Benjamin 2002). However, in the contemporary regime of platforms, this dispersal becomes the precondition for a new form of image-presence, one generated not by cultic embeddedness but by algorithmic persistence and infrastructural saturation.

In *Mass Mediauras*, Weber interprets Benjamin's concept of the aura not as an essence, but as a scene or effect of mediation, which is already implicated in a certain relation of distance. The aura, for Benjamin, is "the unique appearance of a distance, however near it may be" (Benjamin 2002, pp. 104–105) and Weber latches onto this very paradox: he suggests that the aura is about mediated nearness, a nearness that reveals a certain distance, since it functions as a kind of relay between presence and absence, here and there, now and then (Weber 1996, p. 124). This mass-mediation is already present in Sontag's approach to photographic circulation, articulated in her *On Photography*, where she critiques the hunger for images and the transformation of reality into an archive of visual fragments (Sontag 1977). For Sontag, each photograph is a kind of appropriation: an act of consumption masquerading as attentiveness. Yet, where Benjamin and Sontag identified the proliferation of images as a cultural condition, Szendy compels us to understand it also as an ecological and infrastructural burden, since in the world of platforms, images are not only archived, but continuously optimized, predicted, and retained. They leave behind residues not just in memory but also in power grids, lithium fields, undersea cables, and cooling towers.

This afterlife of the image, more specifically, its spectral persistence within algorithmic infrastructures, recalls Derrida's concept of the *trace*, the structural mark of absence that conditions the possibility of presence:

The trace is not only the disappearance of origin,....it means that the origin did not even disappear, that it was never constituted except reciprocally by a non-origin, the trace, which thus becomes the origin of the origin. From then on, to wrench the concept of the trace from the classical scheme which would derive it from a presence or from an originary non-trace and which would make of it an empirical mark, one must indeed speak of an originary trace or arche-trace (Derrida 1976, p. 61).

As Chakravorty Spivak, the translator of Derrida's *Of Grammatology*, notes, the concept of the trace resists any singular or fixed interpretation. Like many key terms in Derrida's lexicon, the trace is inseparable from a constellation of other concepts central to deconstruction, including *differance*, iterability, and absence. Spivak emphasizes the multiplicity of its semantic range by suggesting translations such as "track" or "spoor" (Spivak in Derrida 1976, p. xvii), each foregrounding the trace's relational, deferred, and metonymic structure. Crucially, the trace signifies not merely what is left behind but what insists through absence, i.e., what makes presence possible only as a haunted, non-self-identical form. In this sense, the trace is infrastructural and ecological: it is not simply a

sign of something past, but a constitutive force that shapes the conditions of legibility and meaning in the present.

This hauntological structure becomes especially salient in the context of digital imagery. Every digital image is preceded and succeeded by a latent archive of potential reappearance, through retrieval, reformatting, and resurfacing. What appears visually is only the surface of a broader technical substrate shaped by processes like caching, compression, and indexing. These operations enact a form of spectral inscription, whereby the image is never simply present but always shadowed by its capacity to return. In Derrida's terms, this aligns with the logic of *l'avenir*, the "to-come" (Derrida 1994, p. xix): a future that is both programmed and unpredictable, haunting the present with its recursive possibilities. Digital images, therefore, do not vanish but persist as latent potentialities, caught in algorithmic cycles of repetition, virality, and deferred activation.

Weber also connects the aura to the logic of *différance*, suggesting that the aura is not a stable presence but a trace-like phenomenon, dependent on spatio-temporal deferral (Weber 1996, p. 149). Contrary to simplified readings that see Benjamin as merely nostalgic for a pre-technological aura, Weber insists that the aura returns within technological media, but in altered, displaced forms. Media and the acts of mediation, then, do not eliminate aura; they reconfigure it. This aura is fractured and disseminated, not annihilated, therefore, with Weber's reconceptualization of Benjamin's notion, we can claim that reproducibility generates new modes of aura, tied to the logic of iteration and *différance*. By this, Weber provocatively claims that media and aura are not opposites but mutually constitutive. The aura is always already mediated, it is the effect of a particular relation of mediation. It is the reproducibility of the image that makes this visible.

What emerges in Szendy's ecology of images, then, is not only an environmental critique – though the carbon emissions of server farms and data centers are urgent and undeniable – but a deeper ontological and hauntological account of visual culture. The image is no longer ephemeral; it is weighty, archived, and spectral. It persists in time not as memory but as calculable risk, potential, or pattern. This spectral condition is not only metaphorical. Every platform-optimized image consumes energy, occupies space, and contributes to a system that resists deletion. The *cloud* becomes not a metaphor of lightness but a topology of deferral and retention, storing spectral images that remain accessible long after their apparent disappearance.

3. The Hidden Materiality of Platform Economy

If, as Szendy proposes, every image "occupies a volume," then we must ask: what volumes do images truly inhabit when viewed, uploaded, archived, or forgotten within the digital ecosystem (Szendy 2025, p. 21)? Following the spectral ontologies of the image traced above – where the visual persists as a trace, a residue, or a potential – we arrive at the material architectures that allow these traces to endure. The spectral is not immaterial. In fact, it is the spectrality of the image that binds it most intimately to infrastructures of storage, energy, labor, and geography.

Images today do not simply reside on screens; they circulate through a network of substations, fiber-optic cables, cooling towers, rare earths, and algorithmic pipelines. The platform economy, that late-modern configuration in which images

accrue value through metrics of visibility, engagement, and virality, is made possible only by infrastructural megastructures whose material footprint contradicts the apparent weightlessness of the digital. The cloud, far from being a metaphor of dematerialization, is a topology of extraction and exhaustion.

These conditions are not merely technical; they are profoundly ecological. Behind every act of viewing lies a cascade of electrical charges, server loads, data packets, and carbon emissions (Crawford 2021, pp. 113–142). In this sense, the image has become a thermodynamic entity that consumes energy in the very act of being seen or even simply stored. Images linger as latent possibilities not just in code, but in batteries, in ventilated bunkers, in rural landscapes repurposed for data centers, and in labor regimes that enable their constant accessibility (Hu 2015).

This hidden materiality extends Szendy's call for an "ecology of images" toward a critique of platform infrastructure as an extractive system, one that renders visibility into a planetary demand. What emerges is a deeply ambivalent portrait of the digital image: on the one hand, an ephemeral artifact shaped by the conditions of spectral circulation; on the other, a heavy, resource-bound object anchored in the earth and the grid. The economy of images is therefore not only speculative and semiotic, but geological and geopolitical.

If we consider, for instance, the cooling requirements of hyperscale data centers, it uses millions of gallons of water daily to ensure the thermal regulation of servers hosting cloud platforms (Kim et al. 2024). Or we might also ponder the extraction of lithium and cobalt from ecologically devastated zones to produce the hardware that enables the seeming intangibility of the network. The visual field is thus not only curated by algorithms, but also by flows of energy, scarcity, and territorial control. In this light, the economy is also a kind of iconogeology, a regime in which images are embedded within the very metabolism of the earth.

And yet, despite their profound physicality, images continue to masquerade as disembodied, endlessly mobile, infinitely replicable. This disjunction, between the spectral appearance and its material foundation, can be understood as a constitutive illusion of platform capitalism. The economy depends not only on images being seen but on them being mistaken for that which can be circulated without cost, without trace, without consequence. To expose the hidden materiality of this system is not simply to point to its ecological cost, but to reveal the structural denial upon which its fantasy of frictionless circulation depends. In this sense, the platform economy does not transcend the material world; it reorders it. It produces a new spatial and economic logic, where visibility is inseparable from infrastructural occupation, and where spectral images are the emissaries of energy-intensive visibility regimes. The ecology of the image, then, must be read not only as a philosophical or aesthetic category, but as a political and environmental imperative.

4. Platform Economy as a Geopolitical Structure

While the platform economy appears to be an abstract regime of circulation and attention, it is in fact rooted in territorial and geopolitical transformations. As the previous section demonstrated, digital images rely on dense infrastructural systems

that span continents, draw upon finite natural resources, and require spatial enclosure. The platform economy is therefore never purely virtual. It is an imperial topology, a system of asymmetric spatial relations shaped by data extraction, infrastructural colonialism, and geopolitical control over visibility.

While Szendy speaks of the “volume” of the image in *For an Ecology of Images*, that volume is not only thermodynamic or energetic, it is also territorial (Szendy 2025, p. 21). Every image stored in the cloud occupies a space within the global network of data centers, many of which are concentrated in resource-abundant yet politically subservient regions (Mattern 2021, pp. 106–138). The very architecture of platform capitalism is colonial in its spatial logic: it mines attention from the many, extracts energy from the periphery, and consolidates value within the infrastructural cores of Silicon Valley, Northern Virginia, and other global tech hubs.

Such geopolitical asymmetry becomes clearest in the competition over submarine fiber-optic cables, which carry more than 95% of global internet traffic (Starosielski 2015). These cables form the literal undersea architecture of the economy. Though largely invisible to end-users, they are increasingly the subject of geopolitical contestation – subject to surveillance, sabotage, or outright control by state and corporate actors (Shires 2020, pp. 1–20). Tech giants such as Google, Facebook (Meta), and Amazon now fund and operate their own private cables, effectively privatizing global information flows and displacing sovereign governance with corporate jurisdiction.

This infrastructural hegemony has spurred a series of countermeasures in the form of digital sovereignty movements, especially in the global South. Countries such as Brazil, India, and Kenya have increasingly sought to localize data, to enforce that digital content generated within national borders remains within infrastructural reach (Gurumurthy–Chami 2019, pp. 26–31). While these initiatives often invoke privacy and autonomy, they also underscore the recognition that platform infrastructures are geopolitical actors, capable of shaping economies, influencing elections, and controlling cultural visibility (Zuboff 2019, pp. 129–155).

Here, the platform economy intersects with what political theorists call infrastructural imperialism: a form of power exerted not through military occupation, but through control of networks, protocols, and platforms (Parks–Starosielski 2015). In this model, the image becomes a vector of soft power, not simply through its content, but through its capacity to be surfaced or suppressed, circulated, or quarantined. Control over visibility becomes control over global semiotic flows, enabling new forms of governance that operate invisibly, algorithmically, and often extraterritorially.

This extraterritoriality is not accidental; it is systemic. Data centers are frequently located in tax shelters or neutral zones, where labor protections are minimal, and environmental regulations are weak (Bratton 2016, p. 187). In this way, the very infrastructure that sustains the image’s digital afterlife is secured through legal opacity and jurisdictional fragmentation. The spectral image, as we shall see, is not only ghostly in its ontological structure, but also in its legal status: dispersed, anonymized, unlocatable, yet constantly operational.

To trace the geopolitics of the economy, then, is to follow the pathways through which the visible is rendered governable. The circulation of the image is not

flat or frictionless: it is mapped onto routes of power, indexed by cables, filtered by borders, and interpolated by algorithms shaped by political and economic interests. Visibility is not democratic; it is gated, queued, and throttled. And as platform infrastructures increasingly become the battleground for sovereignty, the image itself becomes a site of jurisdictional dispute: an object claimed, regulated, surveilled, and instrumentalized. In short, the platform economy is a territorial economy of spectral power. Its surface, a glowing interface, an image, a scroll, is merely the shimmering tip of a submerged architecture of governance, one whose depths are occupied by sovereign frictions, infrastructural logistics, and data-imperial ambitions. The image is the emissary of this submerged power: luminous, circulating, but tethered to the dark infrastructures from which it derives its force.

5. Spectral Governance and the Algorithmic Gaze

If the platform economy operates through infrastructural and geopolitical asymmetries, its governance of images is equally spectral and computational. The circulation of images is no longer directed by editorial curation or aesthetic judgment but by predictive, algorithmic systems whose logic is anticipatory and recursive. The gaze of the platform does not see; it calculates. It does not remember; it models recurrence. In this setting, images are no longer experienced as discrete presences but as relational data objects, suspended in feedback loops of deferral and potential reappearance.

This condition is haunting in the most Derridean sense. As Derrida reminds us, the trace is what remains when presence has passed; it is the mark of absence, the structure of *différance* that underwrites all signification (Derrida 1976, p. 65). In the platform economy, the digital image is just such a trace: it is archived, tagged, categorized, and scored not for its intrinsic meaning, but for its capacity to return. What governs visibility is not presence, but latency, the potential of the image to reappear in a user's feed, to trend, to be algorithmically surfaced based on a shifting calculus of relevance. The spectrality lies in this logic of potential return: no image is ever fully gone; no encounter is ever final.

However, this spectral circulation is not immaterial. Every reappearance, every instance of algorithmic inference or prediction, draws on computational resources whose ecological footprint is anything but ghostly. The energy costs of maintaining this economy of spectral images are vast, though rarely made visible to the user. It is here that we must confront the environmental reality behind the spectral metaphor: the ghost lives in the machine, and the machine runs hot.

Nowhere is the ecological cost of spectral governance more evident than in the training and deployment of large-scale artificial intelligence systems that power content moderation, visual recognition, and recommendation algorithms. A landmark study by Strubell et al. (2019) estimated that training a single large natural language processing model, comparable in scale to those used for image tagging, search filtering, or generative applications, produced more than 550 metric tons of CO₂ emissions, equivalent to the lifetime emissions of five American cars (pp. 3645–3650). These emissions are not incidental; they are structural to the process of rendering digital images actionable, iterable, and monetizable. The AI systems that

govern visibility on platforms such as Instagram, TikTok, and YouTube depend on continuous model updates, retraining on massive datasets, and constant inferencing across billions of queries, many of which are oriented toward determining the potential visibility of a given image or video. Every suggested reel, every resurfaced memory, every face recognized in a photograph involves thousands of invisible, energy-intensive micro-decisions executed by the platform. These decisions are spectral not only in their logic of recurrence but in the sense that their ecological costs are displaced, externalized, and obscured from the user.

Thus, the spectral economy of the image takes a planetary toll. Server farms, those massive, continuously humming architectures of storage and transmission, require vast amounts of water for cooling, electricity for computation, and land for physical infrastructure, often encroaching on rural or ecologically sensitive areas (Crawford 2021, p. 44). What appears to the user as effortless access to “the cloud” masks a dense network of extractive processes and material expenditures. The cloud, far from being a neutral or ethereal space of storage, becomes a hauntological site of accumulation and latency. It is a space where images do not simply reside inertly, but remain in suspension, energized, and ever-ready for retrieval, reactivation, or algorithmic circulation. Thus, each act of looking draws on an invisible reservoir of environmental cost.

In Derridean terms, the trace in this context becomes more than a mark of absence or *différance*; it becomes a debt, an energetic residue that persists across temporal and material registers. Every cached or indexed image is a specter, sustained by carbon-intensive machinery and tethered to a deferred economy of visibility. These images haunt the present not only in their capacity to return, but in the ecological footprint they leave behind. Their latency is not purely semiotic but infrastructural: a condition produced and maintained by global networks of extraction, labor, and computation. The archive is no longer merely a site of memory, but a site of slow violence, where the spectral returns of the digital are indexed against environmental degradation and asymmetrical geopolitical investments. To engage with digital images today is thus to participate, however unwittingly, in an economy of haunting whose price is ecological, ontological, and, ultimately, ethical.

This forces us to rethink the algorithmic gaze itself. No longer a metaphorical construct, the gaze is materially instantiated in systems that render images visible through processes of ecological extraction and atmospheric inscription. The gaze of the algorithm is not only computational – it is thermodynamic. It is a gaze that warms the planet, not through intention, but through the logics of incessant anticipation that structure platform infrastructures. The spectral image, in this light, is not a flicker but a burn: it leaves a trace, not just on screens but in soil, water, and air.

In this system, deletion is a fiction. Even images marked for removal linger in caches and backups, indexed for potential audit or algorithmic retraining; they effectively become traces. Nothing is lost and everything is potentially retrievable. The platform archive is not historical; it is speculative. Images live on not because we remember them, but because they might become relevant again, profitable again. Spectrality becomes the principle of economic optimization, where what is not seen still exerts value through its latent visibility.

This is spectral governance: the rule of images that are neither fully present nor wholly absent, exerting force through infrastructures that remain dislocated, disavowed, and ghosted. These are images that are not governed by sovereign visibility but by the logic of latency, effectively constituting a zone where meaning, presence, and consequence remain suspended. The infrastructures that sustain these images, server farms, fiber optic cables, undersea data lines—are often located in zones of exception: tax-free havens, deregulated landscapes, or politically marginalized territories. They are maintained by outsourced and often precarious labor, obscured by corporate secrecy and geopolitical complexity. The emissions they produce are not easily traceable; they are fugitive, diffused, and displaced. What we encounter as a seamless interface is in fact a site of friction, entropy, and systemic forgetting.

Therefore, the platform economy reveals a deeply entangled relationship between image circulation, energetic expenditure, and planetary degradation. The value of the image is no longer reducible to its content or affective charge but is now indexed to its capacity to persist, to be monetized, mobilized, and mined through recursive acts of algorithmic attention. This is a hauntology of infrastructure: where Derrida's ghost walks not only in the ontology of the image but in the warming of the server, the draining of the aquifer, the hum of the data center beneath the desert night. Spectral governance names this condition, a regime in which power operates through deferral and invisibility, where presence is virtual but its consequences are violently material. Here, visibility is not emancipation, but entrapment in a system where every pixel draws from a hidden reserve of extraction and exhaustion. To view is to consume; to circulate is to deplete. In this spectral economy, the image does not merely represent the world; it weighs upon it.

6. Thridspace and the Cloud's Spatial Contradictions

If the platform economy is sustained by spectral governance and ecological infrastructures, then it must also be understood as a spatial production: one that reshapes geographies, enacts territorial logics, and reconfigures the material organization of visibility itself. Here, Soja's concept of Thridspace offers a vital critical framework. Drawing on Lefebvre's spatial triad, Soja distinguishes between *Firstspace* (the material, perceived world), *Secondspace* (its mental, representational codings), and *Thridspace*, a hybrid, lived space where material realities and symbolic imaginaries converge and contest each other (Soja 1996, pp. 8–12). Thridspace, which roughly corresponds to Lefebvre's category of "spaces of representation" (or lived space) as Soja explains, is both "distinct from the other two spaces" and encompasses them. It embodies "complex symbolisms" as

[i]t overlays ... physical space, making symbolic use of its objects' and tends towards "more or less coherent systems of non-verbal symbols and signs". Here we can find not just the spatial representations of power but the imposing and operational power of spatial representations (Soja 1996, p. 68).

The cloud, despite its abstract nomenclature, is a paradigmatic instance of Thridspace. It is at once an economic metaphor, a technical infrastructure, and a lived environment, a site where bodies, data, capital, energy, and desire intersect. Its smooth interface and boundless aesthetic (Secondspace) obscure the fact that it is rooted in highly material operations (Firstspace), which include server farms, fiber-optic networks, security perimeters, and land-use policies. What Soja invites us to see is that these layers are not discrete but dynamically entangled in the lived conditions of platform capitalism (Lefebvre 1991). The cloud is imagined as placeless, yet it produces new centers and peripheries, reterritorializing power in concrete and uneven ways.

The spatial contradictions of the cloud are particularly evident in the emerging geopolitical race for Arctic data centers, a case that vividly illustrates how platform infrastructures depend on reconfigured planetary space. In recent years, tech companies including Facebook, Google, and Microsoft have turned their attention to northern Europe – particularly Sweden, Norway, and Finland – as ideal locations for their data infrastructure (Heininen 2018). As Heininen explains,

Despite different perceptions, discourses and approaches, the post-Cold War Arctic is with a high geopolitical stability based on institutional, international cooperation started by the Arctic states and supported by Arctic indigenous peoples, nongovernmental organizations and sub-national governments. As a result, there are neither armed conflicts nor serious disputes on national borders. Behind the high geopolitical stability are on the one hand, common interests of the Arctic states to decrease military tension and increase political stability by causing a transformation from confrontation to environmental cooperation. On the other hand, there are certain features of Arctic geopolitics as prerequisites for a transformation, such as firm state sovereignty, high degree of legal certainty, and flexibility in agenda setting (Heininen 2018, p. 171).

The Arctic offers a compelling ecological rationale: its cold climate reduces cooling costs for servers, and its proximity to renewable energy sources, such as hydroelectricity, aligns with corporate claims of sustainability. At first glance, these sites appear to offer an ecological solution to the energy-intensive demands of data processing and storage. However, this spatial relocation does not mitigate, but instead displaces the contradictions of platform infrastructures. Arctic data centers require massive tracts of land, reconfiguring rural and indigenous geographies into logistical zones. They demand stable political environments, low electricity costs, and high-speed transatlantic connectivity. This turns otherwise peripheral landscapes into nodal points of global computation, recasting sovereignty, environmental stewardship, and local infrastructure in the service of global platform capital (Hogan 2015). The environment, in effect, becomes a service layer: valued not for its ecological integrity, but for its compatibility with cloud logistics.

What Soja's Thridspace clarifies is that this shift is not just a material transfer of infrastructure from hot to cold climates. It is a reimaging of spatial logics themselves, where the needs of algorithmic economies reshape land, labor, and law.

The seeming sustainability of Arctic data centers becomes legible not as a reduction of environmental burden, but as a strategic spatial fiction, a greenwashed justification for the expansion of planetary-scale computation. The cloud thus materializes in contested territories, producing a new kind of territorial extractivism, one based not on raw materials alone but on climatic optimization and spatial refunctioning.

In this light, the platform economy becomes not only a system of circulation but a geoeconomic apparatus, one that enacts new forms of infrastructural colonization. The spatial contradictions reflect a deeper political condition: its invisibility is a mode of governance. The user sees only the seamless interface, the scrollable image, and the instant upload. But behind this interface lies a distributed geography of privatized enclosures, remote labor, and environmental risk zones. Arctic data centers may cool the servers, but they intensify the abstraction that allows platform infrastructures to appear dematerialized. They deepen the *Thirdspace* paradox: a space that is lived and invisible, territorial and transnational, extractive, and affective all at once.

Indeed, if the image in the platform economy is spectral in its circulation, it is also anchored in a topology of reterritorialized space, a geography that is neither fully global nor local, but striated by the flows of energy, capital, and code. Soja's *Thirdspace* enables us to think this hybrid spatial condition, where the digital is not separate from the material, but is one of its most active producers. The cloud, in this sense, is not a metaphor but a milieu: an environment that conditions the very visibility, legibility, and circulation of images, and that does so through infrastructures that redraw the map of the world.

Thus, to theorize platform economy today is to grapple not only with economies of attention and ecologies of visibility but with the planetary production of space under digital capitalism. The cloud is not above us. It is beneath our feet, in our rivers, on our peripheries, and in our weather systems. It is Soja's *Thirdspace* rendered planetary, a spectral infrastructure that organizes both perception and territory, both visibility and extraction, in one extended circuit.

7. Toward a Post-Platform Economy

Having traced the platform economy through the circuits of spectral governance, ecological cost, and spatial contradiction, we reach a turning point: the need to imagine otherwise. The preceding analyses make clear that the smooth visuality of the platform economy conceals a violent substrate that exhausts planetary resources, reconfigures territorial relations, and governs through spectral latency. If images can no longer be viewed as innocent, then neither can be the infrastructures that sustain them. To continue theorizing image circulation within the same techno-economic frameworks is to remain complicit in their effects. What becomes necessary then is a conceptual and material break that results in the articulation of a post-platform economy.

Such a reorientation does not imply a return to pre-digital regimes of visuality, nor a nostalgic retreat into artisanal slowness. Rather, it calls for the recomposition of visibility itself: a way of thinking images not as units of circulation optimized for engagement, but as agents embedded in political, environmental, and spatial

assemblages. A post-platform economy would begin by limiting circulation, valorizing slowness, and recognizing the finite material basis of all computation. It would confront the fact that visibility is never neutral – that what is shown, what is stored, and what is suppressed are all outcomes of infrastructural choices and algorithmic governance.

There are already models, however partial, that gesture toward such alternatives. Commons-based infrastructures such as *CommonsCloud* (<https://www.commoncloud.coop/>) or *Guifi.net* (<https://guifi.net/>) decentralize digital sovereignty, redirecting control from extractive platforms to cooperative collectives. Low-energy digital design, including *TinyML* and *minimal computing* initiatives, foregrounds ecological sustainability, reducing the carbon cost of computation by scaling down rather than expanding up (Warden 2019, Gil–Risam 2019). Meanwhile, peer-to-peer image networks built on the *InterPlanetary File System (IPFS)* challenge the very premise of centralized cloud storage, offering a model of localized, resilient, and user-controlled visibility (Benet 2014). These are not utopias; they are gestures: experimental forms that interrupt the dominant circuits of the economy and open space for something else to emerge.

From a theoretical perspective, the shift to a post-platform economy invites renewed attention to image ethics and media ontology. The question is no longer simply what an image shows, but what it costs to show. It is a question of the trace, in Derrida's sense, but now rethought in energetic and geopolitical terms. The image is a trace not only of what has been, but of what has been spent in energy, in labor, in territorial reconfiguration. Szendy's call for an ecology of images must be radicalized in this light: not just as an invitation to think with environmental metaphors, but as a demand to restructure the visual economy at its infrastructural root.

Ultimately, to theorize a post-platform economy is to reimagine the relationship between visibility and responsibility. It is to inhabit a new visual ethics, in which images are not endlessly circulated, but carefully attended to; not optimized, but situated; not extracted, but given space to rest. Such an economy would not be free of ghosts – indeed, hauntology may remain its guiding figure – but its specters would no longer be the unacknowledged emissions of a system in denial. They would be reminders of what has passed, of what remains, and of what must not be forgotten as we learn to see again otherwise.

References

Benet, J. (2014): *IPFS – Content Addressed, Versioned, P2P File System*. arXiv. <https://arxiv.org/abs/1407.3561> Date of access: 1 July, 2025.

Benjamin, W. (2002): The Work of Art in the Age of Its Technological Reproducibility. In: Eiland, H. – Jennings, M. W. (eds): *Selected Writings*. 3, 1935–1938, e101–133. Cambridge, MA, Harvard University Press.

Bratton, B. H. (2016): *The Stack: On Software and Sovereignty*. Cambridge, MA, MIT Press. DOI: [10.7551/mitpress/9780262029575.001.0001](https://doi.org/10.7551/mitpress/9780262029575.001.0001)

Broz, M. (2025): Photo statistics: How many photos are taken every day? *Photutorial*. <https://photutorial.com/photos->

[statistics/#:~:text=Google%20Image%20Search%20indexes%20an,WhatsA%20pp%20leading%20at%206.9%20billion](https://www.semanticscience.org/statistics/#:~:text=Google%20Image%20Search%20indexes%20an,WhatsA%20pp%20leading%20at%206.9%20billion) Date of access: 1 July, 2025.

Crawford, K. (2021): *Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence*. New Haven, Yale University Press. DOI: [10.12987/9780300252392](https://doi.org/10.12987/9780300252392)

Derrida, J. (1976): *Of Grammatology*. Johns Hopkins University Press.

Derrida, J. (1994): *Specters of Marx: The State of the Debt, the Work of Mourning, and the New International*. New York: Routledge.

Gil, A. – Risam, R. (eds.) (2024): *Minimal Computing: Foundations and Strategies*. Cambridge, MA, MIT Press.

Gurumurthy, A. – Chami, N. (2019): Towards a Political Economy of Digital Sovereignty. *Development*, 62, 26–31. DOI: [10.1057/s41301-019-00216-1](https://doi.org/10.1057/s41301-019-00216-1)

Heininen, L. (2018): Arctic geopolitics from classical to critical approach – importance of immaterial factors. *Geography, Environment, Sustainability*, 11(1), 171–186. DOI: [10.24057/2071-9388-2018-11-1-171-186](https://doi.org/10.24057/2071-9388-2018-11-1-171-186)

Hogan, M. (2015): Data Centers on the Tundra: Imagining the Arctic as an Information Age Frontier. *Big Data & Society*, 2(2), 1–12. DOI: [10.1177/2053951715592429](https://doi.org/10.1177/2053951715592429)

Hu, T.-H. (2015): *A Prehistory of the Cloud*. Cambridge, MA, MIT Press. DOI: [10.7551/mitpress/9780262029513.001.0001](https://doi.org/10.7551/mitpress/9780262029513.001.0001)

Kim, J. H. – Shin, D. U. – Kim, H. (2024): Data center energy evaluation tool development and analysis of power usage effectiveness with different economizer types in various climate zones. *Buildings*, 14(1), 299. DOI: [10.3390/buildings14010299](https://doi.org/10.3390/buildings14010299)

Lefebvre, H. (1991): *The Production of Space*. Oxford, Blackwell.

Mattern, S. (2021): *A City Is Not a Computer: Other Urban Intelligences*. Princeton: Princeton University Press. DOI: [10.1515/9780691226750](https://doi.org/10.1515/9780691226750)

Parks, L. – Starosielski, N. (eds.) (2015): *Signal Traffic: Critical Studies of Media Infrastructures*. Urbana, University of Illinois Press. DOI: [10.5406/illinois/9780252039362.001.0001](https://doi.org/10.5406/illinois/9780252039362.001.0001)

Shires, J. (2020): The Politics of Submarine Cable Infrastructure: Governance and Geopolitics of the Invisible. *Internet Policy Review*, 9(4), 1–20. DOI: [10.14763/2020.4.1532](https://doi.org/10.14763/2020.4.1532)

Soja, E. W. (1996): *Thirdspace: Journeys to Los Angeles and Other Real-and-Imagined Places*. Oxford, Blackwell.

Sontag, S. (1977): *On Photography*. New York, Farrar, Straus and Giroux.

Srnicek, N. (2016): *Platform Capitalism*. London, Polity Press.

Starosielski, N. (2015): *The Undersea Network*. Durham, NC, Duke University Press. DOI: [10.1215/9780822376224](https://doi.org/10.1215/9780822376224)

Strubell, E. – Ganesh, A. – McCallum, A. (2019): *Energy and Policy Considerations for Deep Learning in NLP*. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, 3645–3650. Florence, Association for Computational Linguistics. DOI: [10.18653/v1/P19-1355](https://doi.org/10.18653/v1/P19-1355)

Szendy, P. (2019): *The Supermarket of the Visible: Toward a General Economy of Images*. New York, Fordham University Press. DOI: [10.2307/j.ctvdtpk68](https://doi.org/10.2307/j.ctvdtpk68)

Szendy, P. (2025): *For an Ecology of Images*. London, Verso.

Warden, P. (2019): *TinyML: The Machine Learning Revolution at the Edge*. Sebastopol, CA, O'Reilly Media.

Weber, S. (1996): *Mass Mediauras: Form, Technics, Media*. Stanford, Stanford University Press.

Zuboff, S. (2019): *The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power*. New York, PublicAffairs.

Žižek, S. (1997): *The Plague of Fantasies*. London, Verso.