?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rft.relation=http%3A%2F%2Facta.bibl.u-szeged.hu%2F55696%2F&rft.title=On+a+reaction-diffusion-advection+system+%3A+fixed+boundary+or+free+boundary&rft.creator=+Xu+Ying&rft.creator=+Zhu+Dandan&rft.creator=+Ren+Jingli&rft.description=This+paper+is+devoted+to+the+asymptotic+behaviors+of+the+solution+to+a+reaction%E2%80%93diffusion%E2%80%93advection+system+in+a+homogeneous+environment+with+fixed+boundary+or+free+boundary.+For+the+fixed+boundary+problem%2C+the+global+asymptotic+stability+of+nonconstant+semi-trivial+states+is+obtained.+It+is+also+shown+that+there+exists+a+stable+nonconstant+co-existence+state+under+some+appropriate+conditions.+Numerical+simulations+are+given+not+only+to+illustrate+the+theoretical+results%2C+but+also+to+exhibit+the+advection-induced+difference+between+the+left+and+right+boundaries+as+time+proceeds.+For+the+free+boundary+problem%2C+the+spreading%E2%80%93vanishing+dichotomy+is+proved%2C+i.e.%2C+the+solution+either+spreads+or+vanishes+finally.+Besides%2C+the+criteria+for+spreading+and+vanishing+are+further+established.&rft.date=2018&rft.type=Foly%C3%B3irat&rft.type=NonPeerReviewed&rft.format=part&rft.language=hu&rft.identifier=http%3A%2F%2Facta.bibl.u-szeged.hu%2F55696%2F1%2Fejqtde_2018_026.pdf&rft.identifier=+++Xu+Ying%3B++Zhu+Dandan%3B++Ren+Jingli%3A+++On+a+reaction-diffusion-advection+system+%3A+fixed+boundary+or+free+boundary.++(2018)+++