?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rft.relation=http%3A%2F%2Facta.bibl.u-szeged.hu%2F55707%2F&rft.title=Linearizability+problem+of+persistent+centers&rft.creator=+Mencinger+Matej&rft.creator=+Fer%C4%8Dec+Brigita&rft.creator=+Fernandes+Wilker&rft.creator=+Oliveira+Regilene&rft.description=The+concepts+of+persistent+and+weakly+persistent+centers+were+introduced+in+2009+and+the+same+concept+was+applied+in+the+study+of+some+families+of+differential+equations+in+2013.+Such+concept+was+generalized+for+complex+planar+differential+systems+in+2014.+In+this+paper+we+extend+the+notion+of+persistent+center+to+a+linearizable+persistent+center+and+a+linearizable+weakly+persistent+center.+Using+the+methods+and+algorithms+of+computational+algebra+we+characterize+the+planar+cubic+differential+system+having+linearizable+persistent+and+linearizable+weakly+persistent+centers+at+the+origin.&rft.date=2018&rft.type=Foly%C3%B3irat&rft.type=NonPeerReviewed&rft.format=part&rft.language=hu&rft.identifier=http%3A%2F%2Facta.bibl.u-szeged.hu%2F55707%2F1%2Fejqtde_2018_037.pdf&rft.identifier=+++Mencinger+Matej%3B++Fer%C4%8Dec+Brigita%3B++Fernandes+Wilker%3B++Oliveira+Regilene%3A+++Linearizability+problem+of+persistent+centers.++(2018)+++