?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rft.relation=http%3A%2F%2Facta.bibl.u-szeged.hu%2F73691%2F&rft.title=Optimal+version+of+the+Picard-Lindel%C3%B6f+theorem&rft.creator=+Schlage-Puchta+Jan-Christoph&rft.description=Consider+the+differential+equation+y+0+%3D+F(x%2C+y).+We+determine+the+weakest+possible+upper+bound+on+%7CF(x%2C+y)+%E2%88%92+F(x%2C+z)%7C+which+guarantees+that+this+equation+has+for+all+initial+values+a+unique+solution%2C+which+exists+globally.&rft.date=2021&rft.type=Foly%C3%B3irat&rft.type=NonPeerReviewed&rft.format=full&rft.language=hu&rft.identifier=http%3A%2F%2Facta.bibl.u-szeged.hu%2F73691%2F1%2Fejqtde_2021_039.pdf&rft.identifier=+++Schlage-Puchta+Jan-Christoph%3A+++Optimal+version+of+the+Picard-Lindel%C3%B6f+theorem.++(2021)+++&rft.language=eng